MARK SCHEME for the October/November 2010 question paper

for the guidance of teachers

9702 PHYSICS

9702/21 Paper 2 (AS Structured Questions), maximum raw mark 60

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2010 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.

	Page 2	2	Mark Scheme: Teachers' version	Syllabus	Paper	
			GCE AS/A LEVEL – October/November 2010 970		21	
1			current, temperature, amount of substance, (luminous ir <i>e, 1 each</i>	ntensity)	B3	[3]
	(b) (i)	F: kợ <i>p</i> : kợ <i>v</i> : m	g m ⁻³		B1 B1 B1	[3]
	(ii)		ne working e.g. kg m s ⁻² = m ² kg m ⁻³ (m s ⁻¹) ^k ce $k = 2$		M1 A1	[2]
2	(a) (i)		zontal speed constant at 8.2 m s ⁻¹ ical component of speed = 8.2 tan 60° = 14.2 m s ⁻¹		C1 M1 A0	[2]
	(ii)		$g^2 = 2 \times 9.8 \times h$ (using $g = 10$ then -1) ical distance = 10.3 m		C1 A1	[2]
	(iii)		e of descent = 14.2 / 9.8 = 1.45 s		C1	
			= 1.45 × 8.2 = 11.9 m		A1	[2]
	(b) (i)		ooth path curved and above given path ground at more acute angle		M1 A1	[2]
	(ii)		ooth path curved and below given path ground at steeper angle		M1 A1	[2]
3	(a) for	ce = ra	rate of change of momentum (allow symbols if de	efined)	B1	[1]
	(b) (i)	Δho	= $140 \times 10^{-3} \times (5.5 + 4.0)$ = 1.33 kg m s^{-1}		C1 A1	[2]
	(ii)	force	e = 1.33 / 0.04 = 33.3 N		M1 A0	[1]
	(c) (i)	(33 >	ng moments about B × 75) + (0.45 × <i>g</i> × 25) = <i>F</i> _A × 20 = 129 N		C1 C1 A1	[3]
	(ii)		= 33 + 129 + 0.45 <i>g</i> = 166 N		C1 A1	[2]

© UCLES 2010 www.XtremePapers.net

	Page 3	Mark Scheme: Teachers' version Syllabus	Paper	
		GCE AS/A LEVEL – October/November 2010 9702	21	
4	(a) (i) F	-/A	B1	[1]
	(ii) ∆	L/L	B1	[1]
	(iii) a	llow $FL/A\Delta L$	B1	[1]
	(iv) a	Illow $\rho L / A$ or $\rho (L + \Delta L) / A$	B1	[1]
	(b) (i) 🛆	L = FL / EA = (30 × 2.6) / (7.0 × 10 ¹⁰ × 3.8 × 10 ⁻⁷) = 2.93 × 10 ⁻³ m = 2.93 mm	M1 A0	[1]
	(ii) ∆	$R = \rho \Delta L / A$ = (2.6 × 10 ⁻⁸ × 2.93 × 10 ⁻³) / (3.8 × 10 ⁻⁷)	C1	
		$= (2.0 \times 10^{-4} \Omega)^{-4} \Omega$	A1	[2]
	• • • •	ge in resistance is (very) small ethod is not appropriate	M1 A1	[2]
5	• •	a wave passes through a slit / by an edge ave spreads out / changes direction	M1 A1	[2]
	(b) diagra	am: wavelength unchanged wavefront flat at centre, curving into geometrical shadow	M1 A1	[2]
	(c) <i>d</i> sin		C1	
	1 / (6	for $\theta = 90^{\circ}$ 1 / (650 × 10 ³) = n × 590 × 10 ⁻⁹		
	<i>n</i> = 2. numb	er of orders is 2	A1	[3]
	(d) intens	sity / brightness decreases (as order increases)	B1	[1]
6	(a) (i) e	wither $P = V^2 / R$ or $P = VI$ and $V = IR$ $R = 4.0 \Omega$	C1 A1	[2]
	(ketch vertical axis labelled appropriately straight) line from origin then curved in correct direction ine passes through 12 V, 3.0 A	B1 B1 B1	[3]
	(b) (i) 2	.0 kW	A1	[1]
	(ii) 0	.5 kW	A1	[1]
		otal resistance = 3 <i>R</i> / 2 ower = 0.67 kW	C1 A1	[2]

© UCLES 2010

www.XtremePapers.net

	Page 4		Mark Scheme: Teachers' version	Syllabus	Paper	,
			GCE AS/A LEVEL – October/November 2010	9702	21	
7	(a)	or	different forms of same element <u>nuclei</u> have same number of protons numbers of neutrons (in the nucleus)		M1 A1	[2]
	(b)	nuc	on number conserved leon number conserved ss-energy conserved		B1 B1 B1	[3]
		(ii) 1. 2 2. x	Z = 36 z = 3		A1 A1	[1] [1]

© UCLES 2010 www.XtremePapers.net