

ADVANCED SUBSIDIARY (AS) General Certificate of Education 2016

Physics

Assessment Unit AS 2

assessing

Module 2: Waves, Photons and Medical Physics

[AY121]

TUESDAY 28 JUNE, MORNING

MARK SCHEME

Subject-specific Instructions

In numerical problems, the marks for the intermediate steps shown in the mark scheme are for the benefit of candidates who do not obtain the final correct answer. A correct answer and unit, if obtained from a valid starting-point, gets full credit, even if all the intermediate steps are not shown. It is not necessary to quote correct units for intermediate numerical quantities.

Note that this "correct answer" rule does not apply for formal proofs and derivations, which must be valid in all stages to obtain full credit.

Do not reward wrong physics. No credit is given for consistent substitution of numerical data, or subsequent arithmetic, **in a physically incorrect equation**. However, answers to subsequent stages of questions that are consistent with an earlier incorrect numerical answer, and are based on a physically correct equation, must gain full credit. Designate this by writing **ECF** (Error Carried Forward) by your text marks.

The normal penalty for an arithmetical and/or unit error is to lose the mark(s) for the answer/unit line. Substitution errors lose both the substitution and answer marks, but 10^{n} errors (e.g. writing 550 nm as 550×10^{-6} m) count only as arithmetical slips and lose the answer mark.

1	(a)
	(9)

Typical frequency/Hz	Region	Typical wavelength/m			
10 ³	Radio	≈10 ⁵			
10 ²²	Gamma	≈10 ⁻¹⁴			

Radio	λ _{radio} ~10 ⁵ m	$10^{-1} - 10^8 \mathrm{m}$	
Gamma	λ _{gamma} ~10 ⁻¹⁴ m	10 ⁻¹⁰ – 10 ⁻¹⁶ m	[2]
[1]	[1]		

(b)	(i)	The fraction of a cycle by which one wave leads/lags the other.	[1]
		or in terms of angle	
		or the fraction of a cycle by which a point in a wave leads/lags anothe	er

(ii)	∆t = 4 (ms)	[1]	
	Fraction of cycle = $4/20 = 0.2$ ecf Δt or 18^0 ms ⁻¹	[1]	
	Phase difference = $0.2 \times 360 = 72$ degrees	[1]	[3]
	ecf for ∆t		

6

2	(a)	Diagram Diagram to include a (glass (or Perspex)) block and ray box + labels. [1]	AVAILABLE MARKS
		or if using TIR method semicircular (glass (or Perspex)) block and ray box + labels.	
		Procedure- (Remove block and) join the incident and emergent rays to show the refracted ray.[1]- Repeat for various angles of incidence.[1]	
		or if using TIR method: – Direct the incident ray towards centre of flat side of semicircular block. [1] – Rotate block/move ray until emergent ray is refracted at an angle of 90° to normal in air/lies along the straight edge of the semicircular block. Mark incident, ((emergent) and reflected rays). [1]	
		Measurements[1]- Calculate sin i and sin r.[1]- Plot a graph of sin i (y-axis) against sin r (x-axis) and calculate gradient.[1]or plot sin r (y-axis) against sin i (x-axis) and calculate 1/gradient.[1]or plot sin r (y-axis) against sin i (x-axis) and calculate 1/gradient.[1]Assume 1st mentioned is in y-axis Calculations and average cannot get 2nd mark[1]	
		or if using TIR method – Measure angle between incident ray and reflected ray using a protractor = 2C. – n = 1/sinC both points needed for [1]	
		Quality of written communication	
		2 marks The candidate expresses ideas clearly and fluently, through well-linked sentences and paragraphs. Arguments are generally relevant and well structured. There are few errors of grammar, punctuation and spelling.	
		1 mark The candidate expresses ideas clearly, if not always fluently. Arguments may sometimes stray from the point. There are some errors in grammar, punctuation and spelling, but not such as to suggest a weakness in these areas.	
		0 marks The candidate expresses ideas satisfactorily, but without precision. Arguments may be of doubtful relevance or obscurely presented. Errors in grammar, punctuation and spelling are sufficiently intrusive to disrupt the understanding of the passage. [2] [7]	

(iii) Any node and antinode correctly marked.

Both correct

[1]

5	(a) (i) There is a constant phase difference between the two waves. [1]				[1]	AVAILABLE MARKS
		(ii)	Sources must have similar amplitudes Room must be dark Screen should be far away from slits (≥ 1m) Same slit width Any 2		[2]	
	(b)	(i)	Path difference = whole odd number of half wavelengths		[-]	
	(0)	(1)	$(= [n + \frac{1}{2}] \lambda)$		[1]	
		(ii)	Third dark fringe, therefore n = 2. (2 + $\frac{1}{2}$) = 1.28 × 10 ⁻⁶	[1] [1]		
			$(2 + \frac{1}{2}) \lambda = 1.38 \times 10$ subs $\lambda = 5.52 \times 10^{-7} \mathrm{m}$ ans	[1]	[3]	7
6	(a)	$\lambda_{sound} >> \lambda_{light}$		[1]		
		stat	ement	[1]		
		l nu	s diffraction of sound through door is much greater than for t	[1]	[3]	
	(b)	T = 1 sc Tim	1/5000 = 2 × 10 ⁻⁴ s quare corresponds to 5 × 10 ⁻⁵ s or T ∞ 4 sq e base setting = 50 μ s cm ⁻¹	[1] [1] [1]	[3]	6
7	(a)	Rap mat with	bid deceleration of the electrons by the nuclei (of the target erial with the emission of photons of electromagnetic radiation various energies).	[1]		
		Dee borr	ep lying electrons in the target material being knocked out by the nbarding electrons creating a vacancy.	e [1]		
		The (with radi	vacancy is filled by an (outer) electron 'falling' into the vacancy h the emission of a high energy photon of electromagnetic ation)	[1]	[3]	
	(b)	(i)	Computed tomograph(y)		[1]	
		(ii)	In a conventional X-ray the beam and detector are stationary In a CT scan the beam (and detector) are rotated (in phase)	[1] [1]	[2]	
		(iii)	The X-ray dose in a CT scan is much higher than for a conventional X-ray or The cost of a CT scan is much higher than for a conventional >	(-ray		
			or Patient preparation can be time consuming/unpleasant		[1]	7

8	(a)	Pho with	tons/electromagnetic radiation must be absorbed by electrons in the metal	[1]		AVAILABLE MARKS
		Pho or	ton energy must be \geq work function of the metal			
		Free	quency of radiation \geq (minimum) threshold frequency f ₀ of meta	l [1]	[2]	
	(b)	φ = = = =	$ \begin{array}{l} hf_0 \mbox{ or } E = hf \\ (6.63 \times 10^{-34} \times 2.5 \times 10^{15}) & \mbox{ eqn or subs} \\ 1.6575 \times 10^{-18} \mbox{ J} \\ 10.36 \mbox{ eV} \end{array} $	[1] [1] [1]	[3]	
		ecf	for conversion of J to eV			
	(c)	(i)	No effect/KE remains the same/stays at zero		[1]	
		(ii)	The number of photoelectrons emitted per second increases		[1]	7
9	(a)	(i)	Population inversion	[1]		
			More (Not all) electrons are in the excited state (than the ground state).	[1]	[2]	
		(ii)	A passing photon with metastable energy equal to the difference between the two energy levels involved.		[1]	
	(b)	(i)	Energy must be supplied to the atom to ionise it Energy level associated with ionisation $= 0$ (therefore levels	[1]		
			have negative values)	[1]	[2]	
			or Stationary free electrons have zero energy			
		(ii)	Transition between (–)4.030 eV and (–)5.995 eV		[1]	
		(iii)	Arrow down between correct levels. (Must be accurately drawn ecf from (b)(ii)	ר)	[1]	7
10	(a)	λ_{db}	= h/p			
		χ_{db}	$= n/m_e v = (6.63 \times 10^{-1})/(9.11 \times 10^{-11} \times 1.22 \times 10^{-1}) \text{ subs}$ = 5.96 × 10 ⁻¹¹ m ecf (v) = 0.0507 nm ocf (i)	[1] [1] [1]	[3]	
	(h)	07 k		[']	[J]	
	(a)	(V ľ (Sin	ice $\lambda_{db} = h/mv$, then) λ_{db} decreases	[1]	101	
		Rinę	g diameters decrease/rings get closer together	[1]	[3]	6
				Т	otal	75