General Certificate of Education January 2005 Advanced Level Examination

PHYSICS (SPECIFICATION A) Unit 4 Waves, Fields and Nuclear Energy

PA04

Section A

Wednesday 26 January 2005 Morning Session

In addition to this paper you will require:

- an objective test answer sheet;
- a black ball-point pen;
- a calculator;
- a question paper/answer book for Section B (enclosed).

Time allowed: The total time for Section A and Section B of this paper is 1 hour 30 minutes

Instructions

- Use a black ball-point pen. Do **not** use pencil.
- Answer all questions in this section.
- For each question there are four responses. When you have selected the response which you think is the most appropriate answer to a question, mark this response on your answer sheet.
- Mark all responses as instructed on your answer sheet. If you wish to change your answer to a question, follow the instructions on your answer sheet.
- Do all rough work in this book **not** on the answer sheet.

Information

- The maximum mark for this section is 30.
- Section A and Section B of this paper together carry 15% of the total marks for Physics Advanced.
- All questions in Section A carry equal marks. No deductions will be made for incorrect answers.
- A *Data Sheet* is provided on pages 3 and 4. You may wish to detach this perforated sheet at the start of the examination.
- The question paper/answer book for Section B is enclosed within this question paper.

Data Sheet

- A perforated *Data Sheet* is provided as pages 3 and 4 of this question paper.
- This sheet may be useful for answering some of the questions in the examination.
- You may wish to detach this sheet before you begin work.

Data Sheet

3	2	
	-	

Fundament	tal constants a	and val	ues		Mechanics and Applied	Fields, Waves, Quantum
Quantity		Symbol		Units	Physics	Phenomena
speed of ligh		c	3.00×10^{8}	$m s^{-1}$	v = u + at	
	of free space	μ_0	$4\pi \times 10^{-7}$	$H m^{-1}$		$g = \frac{F}{m}$
	of free space	$\begin{bmatrix} \mu_0 \\ \epsilon_0 \end{bmatrix}$	8.85×10^{-12}		$s = \left(\frac{u+v}{2}\right)t$	
charge of ele		e^{0}	1.60×10^{-12}			$g = -\frac{GM}{r^2}$
the Planck c		h	6.63×10^{-3}		at^2	r^2
gravitational		G	6.67×10^{-1}	$1 N m^2 kg^{-2}$	$s = ut + \frac{at^2}{2}$	A12
the Avogadr		N _A	6.02×10^{23}	mol ⁻¹	2 2 -	$g = -\frac{\Delta V}{\Delta x}$
molar gas co		\hat{R}	8.31	J K ⁻¹ mol ⁻¹	$v^2 = u^2 + 2as$	
the Boltzman		k	1.38×10^{-22}			$V = -\frac{GM}{r}$
the Stefan co		σ	5.67×10^{-8}	$J K^{-1} W m^{-2} K^{-4}$	$F = \frac{\Delta (m r)}{\Delta t}$	$v = -\frac{1}{r}$
the Wien cor	nstant	α	2.90×10^{-3}	m K		$a = -(2\pi f)^2 x$
electron rest	mass	m _e	9.11×10^{-3}	¹ kg	P = Fv	
(equivalent t	to 5.5×10^{-4} u)				power output	$\nu = \pm 2\pi f \sqrt{A^2 - x^2}$
	rge/mass ratio	e/m _e	1.76×10^{11}		$efficiency = \frac{power \ output}{power \ input}$	$x = A \cos 2\pi f t$
proton rest r		$m_{\rm p}$	$1.67 \times 10^{-2^{\circ}}$	⁷ kg	F - · · · · · F · · ·	-
	to 1.00728u)	-			$\omega = \frac{\nu}{r} = 2\pi f$	$T = 2\pi \sqrt{\frac{m}{k}}$
	ge/mass ratio	e/m _p	9.58×10^{7}	C kg ⁻¹	$r = r^{-2}$	1 10
neutron rest		$m_{\rm n}$	$1.67 \times 10^{-2^{\circ}}$	⁷ kg	.2	$T = 2\pi \sqrt{\frac{l}{g}}$
	to 1.00867u)				$a=\frac{v^2}{r}=r\omega^2$	V g
	field strength	-	9.81	N kg ⁻¹ m s ⁻²	r	$\lambda = \frac{\omega s}{D}$
	due to gravity	١×	9.81	$m s^{-2}$	- 5 3	n - D
atomic mass		u	1.661×10^{-1}	⁻²⁷ kg	$I = \sum mr^2$	$d\sin\theta = n\lambda$
(1u is equiva	lent to				- 1 - 2	
931.3 MeV)		I			$E_{\rm k} = \frac{1}{2} I \omega^2$	$\theta \approx \frac{\lambda}{D}$
Fundament	tal particles				$\omega_2 = \omega_1 + \alpha t$	$_{1}n_{2} = \frac{\sin \theta_{1}}{\sin \theta_{2}} = \frac{c_{1}}{c_{2}}$
CI	- N7	C	, ,	D /	0 1 2	$\int \frac{1}{2} \sin \theta_2 c_2$
Class	Name	Syr	nbol	Rest energy	$\theta = \omega_1 t + \frac{1}{2} \alpha t^2$	$_{1}n_{2} = \frac{n_{2}}{n_{1}}$
				/MeV	2 2 2 2	$_{1}n_{2} = \frac{1}{n_{1}}$
photon	photon	γ		0	$\omega_2^2 = \omega_1^2 + 2\alpha\theta$	$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino	ν _c		0	$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	$\sin \theta_{\rm c} = \frac{1}{n}$
lepton	neutrino				$\theta = \frac{1}{2} \left(\omega_1 + \omega_2 \right) t$	E = hf
		v_{μ}		0	$T = I\alpha$	
	electron	e^{\pm}		0.510999	$I = I\alpha$	$hf = \phi + E_k$
	muon	μ^{\pm}		105.659	angular momentum = $I\omega$	$hf = E_1 - E_2$
mesons	pion	π^{\pm}		139.576	$W = T\theta$, h h
	•	π^0		134.972	$P = T\omega$	$\lambda = \frac{h}{p} = \frac{h}{mv}$
	kaon	K [±]		493.821		
	KaUII	K ⁰			angular impulse = change of	$c = \frac{1}{\sqrt{\mu_0 \varepsilon_0}}$
_				497.762	angular momentum = Tt	$\gamma \mu_0 \varepsilon_0$
baryons	proton	р		938.257	$\Delta Q = \Delta U + \Delta W$	
	neutron	n		939.551	$\Delta W = p \Delta V$	Electricity
					$pV^{\gamma} = \text{constant}$	F
Properties	of quarks					$\in = \frac{E}{O}$
-	-				work done per cycle = area	~
Туре	Charge	Bai	ryon .	Strangeness	of loop	$\epsilon = I(R+r)$
		nur	mber		- <i>J</i> ••• • <i>P</i>	
	2		1	<u>_</u>	input power = calorific	$\frac{1}{n} = \frac{1}{n} + \frac{1}{n} + \frac{1}{n} + \cdots$
u	$+\frac{2}{3}$	+	$-\frac{1}{3}$	0	value \times fuel flow rate	$R_{\rm T}$ R_1 R_2 R_3
d	$-\frac{1}{3}$	4	$-\frac{1}{3}$	0		$R_{\rm T} = R_1 + R_2 + R_3 + \cdots$
-	2				indicated power as (area of p – V	
S	$-\frac{1}{3}$	+	$-\frac{1}{3}$	-1	$loop) \times (no. of cycles/s) \times$	I = I K
					(no. of cylinders)	$E = \frac{F}{Q} = \frac{V}{d}$
Geometrics	al equations				()	$\int D = \overline{Q} = \overline{d}$
	- vyuunons				friction power = indicated	
arc length = .	rθ				power – brake power	$E = \frac{1}{4\pi\varepsilon_0} \frac{Q}{r^2}$
-	the of circle = 2π	· r				$4\pi\varepsilon_0 r^2$
circumjerenc	-	a			$W = O_{m} - O_{m}$	
-	$r = \pi r^2$				$efficiency = \frac{W}{Q_{in}} = \frac{Q_{in} - Q_{out}}{Q_{in}}$	$E = \frac{1}{2} QV$
-					∠in ∠in	F = BIl
area of circle	area of cylinder = $2\pi rh$					
area of circle area of cyline					maximum possible	$F = BO_{ii}$
area of circle area of cylind volume of cy	$vlinder = \pi r^2 h$				maximum possible	F = BQv
area of circle area of cyline	$vlinder = \pi r^2 h$					$F = BQ\nu$ $Q = Q_0 e^{-t/RC}$
area of circle area of cylind volume of cy	$Plinder = \pi r^2 h$ $re = 4\pi r^2$				maximum possible efficiency = $\frac{T_{\rm H} - T_{\rm C}}{T_{\rm H}}$	

magnitude of induced e.m.f. =
$$N \frac{\Delta \Phi}{\Delta t}$$
E $I_{rms} = \frac{I_0}{\sqrt{2}}$ $l = l$ $V_{rms} = \frac{V_0}{\sqrt{2}}$ $l = l$ Wechanical and Thermal
Properties $t = lensile stress = \frac{F}{A} \frac{l}{e}$ energy stored = $\frac{1}{2}$ FeAs $\Delta Q = mc \ \Delta 0$ $\Delta Q = ml$ $\Delta Q = ml$ D $pV = \frac{1}{3} Nmc^2$ 1 $\frac{1}{2}mc^2 = \frac{3}{2} kT = \frac{3RT}{2N_A}$ 1 Nuclear Physics and Turning 1 Points in Physics 3 force = $\frac{eV_p}{d}$ 1 force = Bev M radius of curvature = $\frac{mv}{Be}$ M $e^{\frac{V}{d}} = mg$ M $work \ done = eV$ $F = 6\pi \eta rv$ $I = k \frac{I_0}{x^2}$ λ_m $\lambda = -\lambda N$ $p = \lambda$ $\lambda = \frac{h}{\sqrt{2meV}}$ $\Delta \frac{\lambda}{k}$ $T_1 = \frac{\ln 2}{\lambda}$ R_s $R = r_0 A^{\frac{1}{3}}$ R_s

 $= mc^{2} = \frac{m_{0}c^{2}}{\left(1 - \frac{\nu^{2}}{c^{2}}\right)^{\frac{1}{2}}}$ $= l_0 \left(1 - \frac{\nu^2}{c^2}\right)^{\frac{1}{2}}$ $=\frac{t_0}{\left(1-\frac{\nu^2}{c^2}\right)^{\frac{1}{2}}}$ strophysics and Medical iysics Body Mass/kg Mean radius/m 2.00×10^{30} 7.00×10^8 Sun 6.00×10^{24} 6.40×10^{6} Earth astronomical unit = 1.50×10^{11} m barsec = $206265 \text{ AU} = 3.08 \times 10^{16} \text{ m} =$ 3.26 ly ight year = 9.45×10^{15} m ubble constant (H) = 65 km s⁻¹ Mpc⁻¹ angle subtended by image at eye == angle subtended by object at unaided eye $f = \frac{f_{\rm o}}{f_{\rm e}}$ $-M = 5 \log \frac{d}{10}$ $_{ax}T = constant = 0.0029 m K$ Hd $= \sigma A T^4$ $=\frac{v}{c}$ $=-\frac{v}{c}$ $\approx \frac{2GM}{c^2}$

Medical Physics

$$power = \frac{1}{f}$$

$$\frac{1}{u} + \frac{1}{v} = \frac{1}{f} \text{ and } m = \frac{v}{u}$$

$$intensity \ level = 10 \ \log \frac{I}{I_0}$$

$$I = I_0 e^{-\mu x}$$

$$\mu_m = \frac{\mu}{\rho}$$

Electronics

Resistors

Preferred values for resistors (E24) Series: 1.0 1.1 1.2 1.3 1.5 1.6 1.8 2.0 2.2 2.4 2.7 3.0 3.3 3.6 3.9 4.3 4.7 5.1 5.6 6.2 6.8 7.5 8.2 9.1 ohms and multiples that are ten times greater

$$Z = \frac{V_{\rm rms}}{I_{\rm rms}}$$

$$\frac{1}{C_{\rm T}} = \frac{1}{C_1} + \frac{1}{C_2} + \frac{1}{C_3} + \cdots$$

$$C_{\rm T} = C_1 + C_2 + C_3 + \cdots$$

$$X_{\rm C} = \frac{1}{2\pi fC}$$

Alternating Currents

 $f = \frac{1}{T}$

G

Operational amplifier

 $G = \frac{V_{\text{out}}}{V_{\text{in}}}$ voltage gain

$$=-\frac{R_{\rm f}}{R_{\rm 1}}$$
 inverting

 $G = 1 + \frac{R_{\rm f}}{R_1}$ non-inverting

$$V_{\text{out}} = -R_{\text{f}} \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} \right) \text{ summing}$$

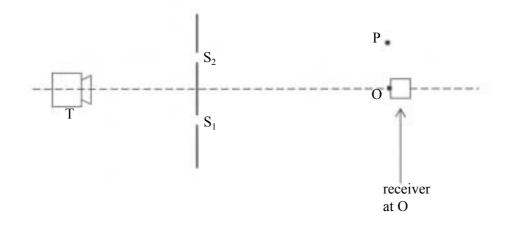
W05/PA04 Section A

SECTION A

In this section each item consists of a question or an incomplete statement followed by four suggested answers or completions.

You are to select the most appropriate answer in each case. You are advised to spend approximately **30 minutes** on this section.

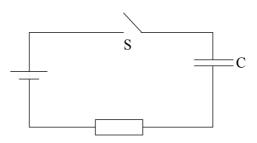
- 1 Which one of the following statements always applies to a damping force acting on a vibrating system?
 - A It is in the same direction as the acceleration.
 - **B** It is in the opposite direction to the velocity.
 - C It is in the same direction as the displacement.
 - **D** It is proportional to the displacement.
- 2 Which line, A to D, in the table shows correct relationships for the respective wavelengths, $\lambda_{\rm L}$, $\lambda_{\rm S}$, and frequencies, $f_{\rm L}$, $f_{\rm S}$, of light waves and sound waves?

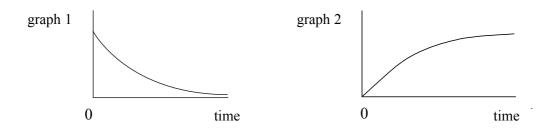

	wavelengths	frequencies
A	$\lambda_{\rm L} << \lambda_{\rm S}$	$f_{\rm L} >> f_{\rm S}$
В	$\lambda_{\rm L} << \lambda_{ m S}$	$f_{\rm L} \ll f_{\rm S}$
С	$\lambda_{\rm L} >> \lambda_{\rm S}$	$f_{\rm L} >> f_{\rm S}$
D	$\lambda_L >> \lambda_S$	$f_{\rm L} \ll f_{\rm S}$

- 3 Two points on a progressive wave differ in phase by $\frac{\pi}{4}$. The distance between them is 0.5 m, and the frequency of the oscillation is 10 Hz. What is the minimum speed of the wave?
 - A 0.2 m s^{-1}
 - **B** $10 \,\mathrm{m\,s^{-1}}$
 - C $20 \,\mathrm{m\,s^{-1}}$
 - **D** $40 \,\mathrm{m \, s^{-1}}$

4 Which line, **A** to **D**, in the table gives a correct difference between a progressive wave and a stationary wave?

	progressive wave	stationary wave
A	all the particles vibrate	some of the particles do not vibrate
В	none of the particles vibrate with the same amplitude	all the particles vibrate with the same amplitude
С	all the particles vibrate in phase with each other	none of the particles vibrate in phase with each other
D	some of the particles do not vibrate	all the particles vibrate in phase with each other


5 The diagram shows a microwave transmitter T which directs microwaves of wavelength λ at two slits S_1 and S_2 formed by metal plates. The microwaves that pass through the two slits are detected by a receiver.

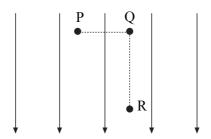

When the receiver is moved to P from O, which is equidistant from S_1 and S_2 , the signal received decreases from a maximum to a minimum. Which one of the following statements is a correct deduction from this observation?

- A The path difference $S_1O S_2O = 0.5\lambda$
- **B** The path difference $S_1O S_2O = \lambda$
- C The path difference $S_1P S_2P = 0.5\lambda$
- **D** The path difference $S_1P S_2P = \lambda$

- $\begin{array}{lll} {\bf A} & & 4.0\times10^{-4}{\rm J} \\ {\bf B} & & 2.0\times10^{-3}{\rm J} \\ {\bf C} & & 2.0\times10^{-2}{\rm J} \\ {\bf D} & & 4.0\times10^{-2}{\rm J} \end{array}$
- 7 In the circuit shown, the capacitor C is charged to a potential difference *V* when the switch S is closed.

Which line, **A** to **D**, in the table gives a correct pair of graphs showing how the charge and current change with time after S is closed?

	charge	current
A	graph 1	graph 1
В	graph 1	graph 2
С	graph 2	graph 2
D	graph 2	graph 1


- 8 A mass on the end of a string is whirled round in a horizontal circle at increasing speed until the string breaks. The subsequent path taken by the mass is
 - A a straight line along a radius of the circle.
 - **B** a horizontal circle.
 - **C** a parabola in a horizontal plane.
 - **D** a parabola in a vertical plane.
- 9 A particle of mass m moves in a circle of radius r at a uniform speed with frequency f. What is the kinetic energy of the particle?
 - $\mathbf{A} \qquad \frac{mf^2r}{4\pi^2}$ $\mathbf{B} \qquad \frac{mf^2r}{2}$ $\mathbf{C} \qquad 2\pi^2mf^2r^2$
 - **D** $4\pi^2 m f^2 r^2$
- 10 Two isolated point charges are separated by 0.04 m and attract each other with a force of $20 \mu \text{N}$. If the distance between them is increased by 0.04 m, what is the new force of attraction?
 - A
 40 μN

 B
 20 μN

 C
 10 μN

 D
 5 μN

11

The diagram shows a uniform electric field of strength 10 Vm⁻¹

A charge of 4μ C is moved from P to Q and then from Q to R. If the distance PQ is 2 m and QR is 3 m, what is the change in potential energy of the charge when it is moved from P to R?

Α	40 µJ
B	50 µJ
С	120 µJ
D	200 µJ

12 The path followed by an electron of momentum p, carrying charge -e, which enters a magnetic field at right angles, is a circular arc of radius r.

What would be the radius of the circular arc followed by an α particle of momentum 2p, carrying charge +2e, which entered the same field at right angles?

- $\frac{r}{2}$ А B r С 2r4rD
- 13 The mass of the beryllium nucleus, ${}^{7}_{4}$ Be, is 7.01473 u. What is the binding energy **per nucleon** of this nucleus?

Use the following data:

mass of proton $= 1.00728 \,\mathrm{u}$ mass of neutron = $1.00867 \,\mathrm{u}$ $1u = 931.3 \,\text{MeV}$

- 1.6 MeV nucleon⁻¹ Α
- 5.4 MeV nucleon⁻¹ В
- 9.4 MeV nucleon⁻¹ С
- D 12.5 MeV nucleon⁻¹
- 14 The fusion of two deuterium nuclei produces a nuclide of helium plus a neutron and liberates 3.27 MeV of energy. How does the mass of the two deuterium nuclei compare with the combined mass of the helium nucleus and neutron?
 - It is 5.8×10^{-30} kg greater before fusion. Α
 - It is 5.8×10^{-30} kg greater after fusion. It is 5.8×10^{-36} kg greater before fusion. В
 - С
 - It is 5.8×10^{-36} kg greater after fusion. D
- The fission of one nucleus of uranium 235 releases 200 MeV of energy. What is the value of this 15 energy in J?
 - 3.2×10^{-25} J Α $3.2 \times 10^{-17} J$ B $3.2 \times 10^{-11} \text{J}$ С D $2.0 \times 10^6 \text{J}$

END OF SECTION A