| Paper Reference (complete below) | Centre<br>No.    | Surname   | Initial(s) |
|----------------------------------|------------------|-----------|------------|
| 6664/01                          | Candidate<br>No. | Signature |            |

# Paper Reference(s) 66664 Edexcel GCE Core Mathematics C2 Advanced Subsidiary Mock Paper

Time: 1 hour 30 minutes

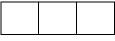
Materials required for examination Mathematical Formulae Items included with question papers Nil

Candidates may use any calculator EXCEPT those with the facility for symbolic algebra, differentiation and/or integration. Thus candidates may NOT use calculators such as the Texas Instruments TI 89, TI 92, Casio CFX 9970G, Hewlett Packard HP 48G.

#### Instructions to Candidates

In the boxes above, write your cente number, candidate number, your surname, initials and signature. You must write your answer for each question in the space following the question. If you need more space to complete your answer to any question, use additional answer sheets.

When a calculator is used, the answer should be given to an appropriate degree of accuracy.


#### **Information for Candidates**

A booklet 'mathematical Formulae and Statistical Tables' is provided. Full marks may be obtained for answers to ALL questions. This paper has ten questions.

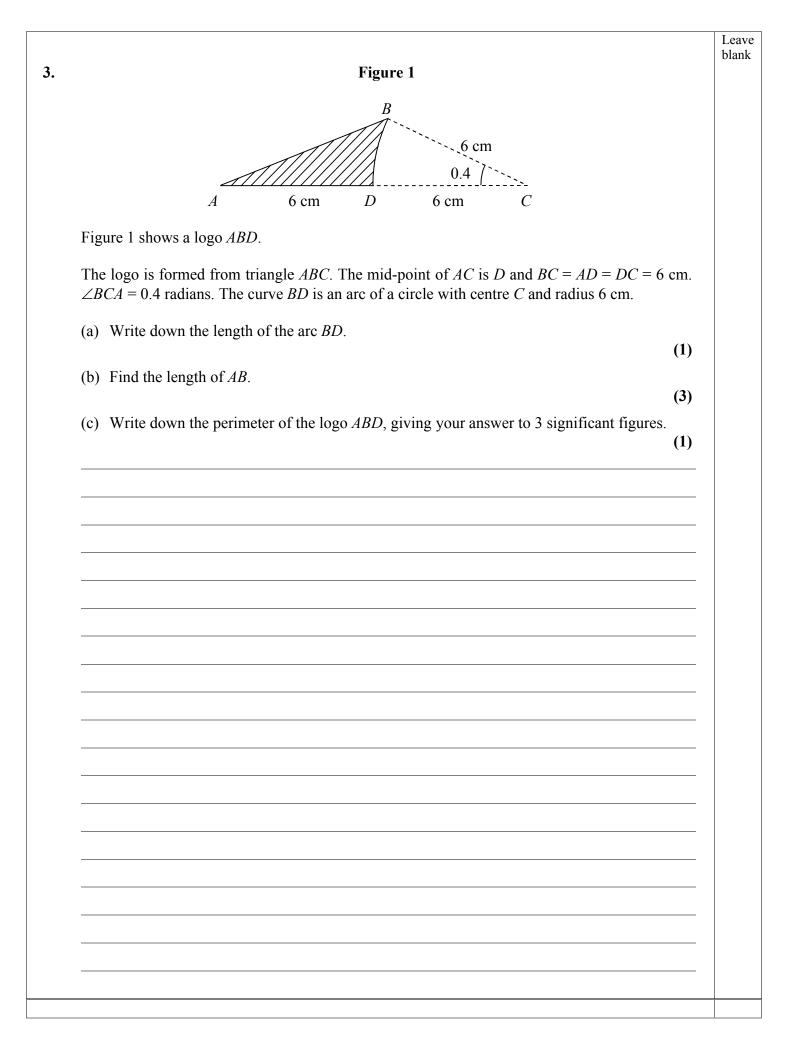
### Advice to Candidates

You must ensure that your answers to parts of questions are clearly labelled. You must show sufficient working to make your methods clear to the examiner. Answers without working may gain no credit.

#### Examiner's use only



## Team Leader's use only




Turn over



|    |                                                              | Leav<br>blanl |
|----|--------------------------------------------------------------|---------------|
| 1. | $f(x) = 2x^3 - x^2 + px + 6,$                                |               |
|    | where <i>p</i> is a constant.                                |               |
|    | Given that $(x - 1)$ is a factor of $f(x)$ , find            |               |
|    | (a) the value of $p$ ,                                       |               |
|    | (2) (b) the neuroinder when $f(x)$ is divided by $(2x + 1)$  |               |
|    | (b) the remainder when $f(x)$ is divided by $(2x + 1)$ . (2) |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |
|    |                                                              |               |

2. (a) Find 
$$\int \left(3+4x^3-\frac{2}{x^2}\right) dx$$
.  
(b) Hence evaluate  $\int_{1}^{2} \left(3+4x^3-\frac{2}{x^2}\right) dx$ .  
(c) (c)  $\int_{1}^{1} \left(3+4x^3-\frac{2}{x^2}\right) dx$ .  
(c) (c)  $\int_{1}^{1} \left(3+4x^3-\frac{2}{x^2}\right) dx$ .  
(c)  $\int_{1}^{1} \left(3+4x^3-\frac{2}{x^2}\right) dx$ .  
(c)  $\int_{1}^{1} \left(3+4x^3-\frac{2}{x^2}\right) dx$ .



|            |       |                                                  | ]   |
|------------|-------|--------------------------------------------------|-----|
| <b>1</b> . | Solve |                                                  |     |
|            |       | $2 \log_3 x - \log_3 (x - 2) = 2, \qquad x > 2.$ |     |
|            |       |                                                  | (6) |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |
|            |       |                                                  |     |

| The second and fifth terms of a geometric series are 9 and 1. | 125 respectively. |
|---------------------------------------------------------------|-------------------|
| For this series find                                          | 125 respectively. |
|                                                               |                   |
| (a) the value of the common ratio,                            | (3)               |
| (b) the first term,                                           | (3)               |
|                                                               | (2)               |
| (c) the sum to infinity.                                      |                   |
|                                                               | (2)               |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |
|                                                               |                   |

|    |           | Leave blank |
|----|-----------|-------------|
| 5. | continued |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           |             |
|    |           | 1           |

Leave blank The circle C, with centre A, has equation 6.  $x^2 + y^2 - 6x + 4y - 12 = 0.$ (a) Find the coordinates of *A*. (2) (b) Show that the radius of *C* is 5. (2) The points P, Q and R lie on C. The length of PQ is 10 and the length of PR is 3. (c) Find the length of QR, giving your answer to 1 decimal place. (3)

|   |           | I<br>I |
|---|-----------|--------|
|   | continued |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| _ |           |        |
| _ |           |        |
|   |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| _ |           |        |
|   |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| _ |           |        |
| _ |           |        |
|   |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| _ |           |        |
| _ |           |        |
|   |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| - |           |        |
| _ |           |        |
| _ |           |        |
| - |           |        |
| - |           |        |

| The first four terms, in ascending powers of x, of the binomial expansion of $(1 + kx)^{k}$ | <sup><i>i</i></sup> are |
|---------------------------------------------------------------------------------------------|-------------------------|
| $1 + Ax + Bx^2 + Bx^3 + \dots,$                                                             |                         |
| where k is a positive constant and A, B and n are positive integers.                        |                         |
| (a) By considering the coefficients of $x^2$ and $x^3$ , show that $3 = (n-2)k$ .           | (4)                     |
| Given that $A = 4$ ,                                                                        |                         |
| (b) find the value of <i>n</i> and the value of <i>k</i> .                                  | (4)                     |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |
|                                                                                             |                         |

|           | I<br>  t |
|-----------|----------|
| continued |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           | <br>     |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           | <br>     |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |
|           |          |

|    | nearest degree.                                                                          | (4) |
|----|------------------------------------------------------------------------------------------|-----|
| b) | Find the exact values of $\theta$ in the interval $0 \le \theta \le 360^\circ$ for which | (+) |
|    | $3 \tan \theta = 2 \cos \theta.$                                                         |     |
|    |                                                                                          | (6) |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |
|    |                                                                                          |     |

| continued |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

| A pencil holder is in the shape of an open circular cylinder of radius $r$ cm and The surface area of the cylinder (including the base) is 250 cm <sup>2</sup> . | neight <i>n</i> chil. |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|
| (a) Show that the volume, $V \text{ cm}^3$ , of the cylinder is given by $V = 125r - \frac{\pi r^3}{2}$ .                                                        |                       |
|                                                                                                                                                                  | (4)                   |
| (b) Use calculus to find the value of $r$ for which $V$ has a stationary value.                                                                                  | (3)                   |
| (c) Prove that the value of $r$ you found in part (b) gives a maximum value for $V$ .                                                                            |                       |
| (d) Calculate, to the nearest $cm^3$ , the maximum volume of the pencil holder.                                                                                  | (2)                   |
| a) Culculate, to the nearest only, the maximum volume of the penell holder.                                                                                      | (2)                   |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |
|                                                                                                                                                                  |                       |

| 9. continued       blank |
|--------------------------|
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |
|                          |

10.



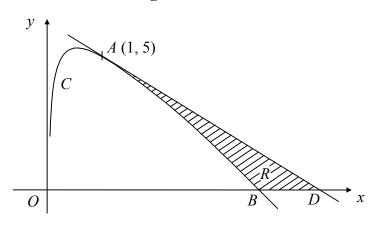



Figure 2 shows part of the curve C with equation

$$y=9-2x-\frac{2}{\sqrt{x}}, \qquad x>0.$$

The point A(1, 5) lies on C and the curve crosses the x-axis at B(b, 0), where b is a constant and b > 0.

(a) Verify that 
$$b = 4$$
.

The tangent to C at the point A cuts the x-axis at the point D, as shown in Fig. 2.

(b) Show that an equation of the tangent to C at A is y + x = 6.

(4)

(1)

(1)

The shaded region R, shown in Fig. 2, is bounded by C, the line AD and the x-axis.

(d) Use integration to find the area of *R*.

(c) Find the coordinates of the point *D*.

(6)

Leave blank

| continued |  |
|-----------|--|
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |
|           |  |

|     |           | Leave<br>blank |  |  |  |
|-----|-----------|----------------|--|--|--|
|     |           |                |  |  |  |
| 10. | continued |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     |           |                |  |  |  |
|     | END       |                |  |  |  |