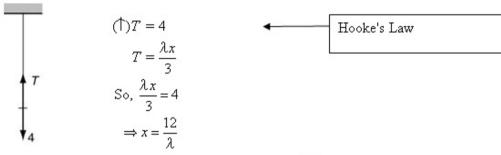
Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise A, Question 1

Question:

One end of a light elastic string is attached to a fixed point. A force of 4 N is applied to the other end of the string so as to stretch it. The natural length of the string is 3 m and the modulus of elasticity is λ N. Find the total length of the string when

- a $\lambda = 30$,
- **b** $\lambda = 12$,
- $c \lambda = 16$.

Solution:

 \therefore Total length of string, $L=3+\frac{12}{\lambda}$

a
$$\lambda = 30$$
: $L = 3 + \frac{12}{30}$
= 3.4 m

b
$$\lambda = 12$$
: $L = 3 + \frac{12}{12}$
= 4 m

c
$$\lambda = 16$$
: $L = 3 + \frac{12}{16}$
= 3.75 m

Elastic strings and springs Exercise A, Question 2

Question:

The length of an elastic spring is reduced to 0.8 m when a force of 20 N compresses it. Given that the modulus of elasticity of the spring is 25 N, find its natural length.

Solution:

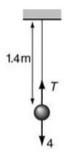
by Hooke's Law,

$$20 = \frac{25(l - 0.8)}{l}$$

$$4L = 5l - 4$$

$$4 = l$$

Natural length is 4 m.


Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise A, Question 3

Question:

An elastic spring of modulus of elasticity 20 N has one end fixed. When a particle of mass 1 kg is attached to the other end and hangs at rest, the total length of the spring is 1.4 m. The particle of mass 1 kg is removed and replaced by a particle of mass 0.8 kg. Find the new length of the spring.

Solution:

Let natural length be l

$$T = g = 9.8$$

$$T = \frac{20(1.4 - l)}{l}$$

$$9.8 = 20 \frac{(1.4 - l)}{l}$$

$$9.8l = 28 - 20l$$

$$29.8l = 28 \Rightarrow l = \frac{28}{29.8} = \frac{140}{149}$$

$$0.8g = \frac{20x}{\left(\frac{140}{149}\right)}$$

$$0.8g = \frac{20x \times 149}{140^7}$$

$$\frac{5.6g}{149} = x$$

$$x \approx 0.3683$$

Total length of string is $0.3683 + \frac{140}{149}$ = 1.31 m (3 s.f.)

Elastic strings and springs Exercise A, Question 4

Question:

A light elastic spring, of natural length α and modulus of elasticity λ , has one end fixed. A scale pan of mass M is attached to its other end and hangs in equilibrium. A mass m is gently placed in the scale pan. Find the distance of the new equilibrium position below the old one.

Solution:

$$Mg = \frac{\lambda x_1}{a} \Rightarrow x_1 = \frac{Mga}{\lambda}$$

$$(M+m)g = \frac{\lambda x_2}{a} \Rightarrow x_2 = \frac{(M+m)ga}{\lambda}$$

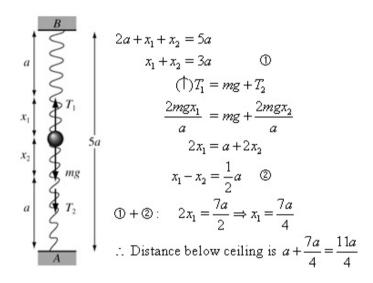
$$\therefore x_2 - x_1 = \frac{ga}{\lambda}(M+m-M) = \frac{mga}{\lambda}$$

Elastic strings and springs Exercise A, Question 5

Ouestion:

An elastic string has length a_1 when supporting a mass m_1 and length a_2 when supporting a mass m_2 . Find the natural length and modulus of elasticity of the string.

Solution:


$$\begin{split} m_1 & g = \frac{\lambda(a_1 - l)}{l} \quad \oplus \\ m_2 & g = \frac{\lambda(a_2 - l)}{l} \quad \oplus \\ \text{Dividing,} \\ & \frac{m_1}{m_2} = \frac{a_1 - l}{a_2 - l} \\ & m_1(a_2 - l) = m_2(a_1 - l) \\ & m_1a_2 - m_2a_1 = l(m_1 - m_2) \\ & l = \frac{m_1a_2 - m_2a_1}{m_1 - m_2} \\ & m_1 & g - m_2 & g = \frac{\lambda a_1}{l} - \lambda - \left(\frac{\lambda a_2}{l} - \lambda\right) \\ & lg(m_1 - m_2) = \lambda(a_1 - a_2) \\ & \lambda = gl\frac{(m_1 - m_2)}{(a_1 - a_2)} \\ & = g\frac{(m_1 - m_2)}{(a_1 - a_2)} \frac{(m_1a_2 - m_2a_1)}{(m_1 - m_2)} \\ & = g\frac{(m_1a_2 - m_2a_1)}{(a_1 - a_2)} \end{split}$$

Elastic strings and springs Exercise A, Question 6

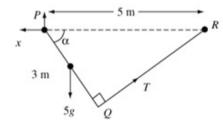
Question:

A light elastic spring has natural length 2a and modulus of elasticity 2mg. A particle of mass m is attached to the mid-point of the spring. One end of the spring, A, is attached to the floor of a room of height 5a and the other end is attached to the ceiling of the room at a point B vertically above A. Find the distance of the particle below the ceiling when it is in equilibrium.

Solution:

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise A, Question 7


Question:

A uniform rod PQ, of mass 5 kg and length 3 m, has one end, P, smoothly hinged to a fixed point. The other end, Q is attached to one end of a light elastic string of modulus of elasticity 30 N. The other end of the string is attached to a fixed point R which is on the same horizontal level as P with RP = 5 m. The system is in equilibrium and

$$\angle PQR = 90^{\circ}$$
. Find

- a the tension in the string,
- b the natural length of the string.

Solution:

$$PQR = 90^{\circ} \Rightarrow QR = 4 \text{ m}$$

 $\cos \alpha = \frac{3}{5}; \sin \alpha = \frac{4}{5}$

$$\mathbf{a} \quad m(P), 5g \times \frac{3}{2} \cos \alpha = 3T$$
$$5g \times \frac{3}{2} \times \frac{3}{5} = 3T$$
$$T = \frac{3g}{2} = 14.7 \text{ N}$$

Tension is 14.7 N.

b
$$14.7 = \frac{30(4-l)}{l}$$
$$14.7l = 120 - 30l$$
$$44.7l = 120$$
$$l = 2.68...$$

Natural length is 2.7 m (2 s.f.)

Elastic strings and springs Exercise A, Question 8

Question:

A light elastic string AB has natural length l and modulus of elasticity 2mg. Another light elastic string CD has natural length l and modulus of elasticity 4mg. The strings are joined at their ends B and C and the end A is attached to a fixed point. A particle of mass m is hung from the end D and is at rest in equilibrium. Find the length AD.

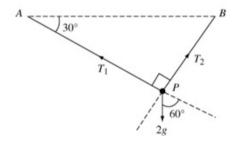
Solution:

(B/C)
$$(B/C) + I = mg \text{ (throughout the length)}$$
so, $mg = \frac{2mgx_1}{l} \Rightarrow x_1 = \frac{1}{2}l$
and $mg = \frac{4mgx_2}{l} \Rightarrow x_2 = \frac{1}{4}l$

$$\therefore AD = 2l + x_1 + x_2$$

$$= \frac{11l}{4}$$

Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise A, Question 9

Ouestion:

An elastic string PA has natural length 0.5 m and modulus of elasticity 9.8 N. The string PB is inextensible. The end A of the elastic string and the end B of the inextensible string are attached to two fixed points which are on the same horizontal level. The end P of each string is attached to a 2 kg particle. The particle hangs in equilibrium below AB, with PA making an angle of 30° with AB and PA perpendicular to PB. Find

- a the length of PA,
- b the length of PB,
- c the tension of PB.

Solution:

so,
$$\frac{9.8x_1}{0.5} = 9.8$$

$$x_1 = 0.5$$

$$AP = 0.5 + 0.5$$

$$=1 \, \mathrm{m}$$

b
$$\frac{PB}{1}$$
 = tan 30° = $\frac{1}{\sqrt{3}}$ m
≈ 0.577 m
= 0.58 m (2 s.f.)

$$T_2 = 2g\cos 30^{\circ}$$

$$=2g\frac{\sqrt{3}}{2}$$

$$= g\sqrt{3} N$$

$$\approx 17 \text{ N}(2 \text{ s.f.})$$

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise A, Question 10

Question:

A particle of mass 2 kg is attached to one end P of a light elastic string PQ of modulus of elasticity 20 N and natural length 0.8 m. The end Q of the string is attached to a point on a rough plane which is inclined at an angle α to the horizontal, where

 $\tan \alpha = \frac{3}{4}$. The coefficient of friction between the particle and the plane is $\frac{1}{2}$. The


particle rests in limiting equilibrium, on the point of sliding down the plane, with PQ along a line of greatest slope. Find

a the tension in the string,

b the length of the string.

Solution:

a

$$(\nwarrow)R = 2g\cos\alpha = \frac{8g}{5}$$
$$\therefore F = \frac{1}{2} \times \frac{8g}{5} = \frac{4g}{5}$$

$$(\nearrow)T + \frac{4g}{5} = 2g\sin\alpha = \frac{6g}{5}$$

$$T = \frac{2g}{5}$$

= 3.92 N
= 3.9 N(2 s.f.)

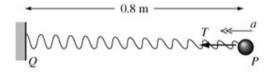
b
$$3.92 = \frac{20x}{0.8}$$

$$x = 0.1568 \,\mathrm{m}$$

... Length of string is 0.9568 = 0.96 m (2 s.f.)

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise B, Question 1


Question:

A particle of mass 4 kg is attached to one end P of a light elastic spring PQ, of natural length 0.5 m and modulus of elasticity 40 N. The spring rests on a smooth horizontal plane with the end O fixed. The particle is held at rest and then released. Find the initial acceleration of the particle

a if $PQ = 0.8 \,\mathrm{m}$ initially,

b if PQ = 0.4 m initially.

Solution:

$$\mathbf{a} \quad (\longleftarrow) T = 4a$$

$$T = \frac{40 \times 0.3}{0.5}$$

$$\therefore 24 = 4a$$

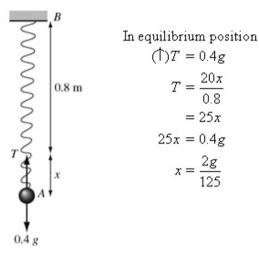
$$6 = a$$

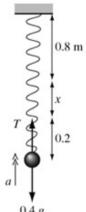
initial acceleration is 6 m s⁻²

$$(\rightarrow)S = 4a$$

$$S = \frac{40 \times 0.1}{0.5}$$

$$2 = a$$


initial acceleration is 2 m s⁻²


Elastic strings and springs Exercise B, Question 2

Question:

A particle of mass $0.4 \, \mathrm{kg}$ is fixed to one end A of a light elastic spring AB, of natural length $0.8 \, \mathrm{m}$ and modulus of elasticity $20 \, \mathrm{N}$. The other end B of the spring is attached to a fixed point. The particle hangs in equilibrium. It is then pulled vertically downwards through a distance $0.2 \, \mathrm{m}$ and released from rest. Find the initial acceleration of the particle.

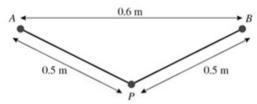
Solution:

After further extension,

$$(\uparrow)T - 0.4g = 0.4a$$

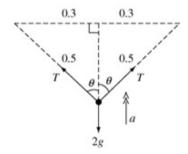
$$T = \frac{20(x+0.2)}{0.8}$$

$$= 25x+5$$
So, $25x+5-0.4g = 0.4a$


$$a = \frac{5}{0.4}$$

$$= 12.5$$

initial acceleration is 12.5 m s⁻²


Elastic strings and springs Exercise B, Question 3

Question:

A particle P of mass 2 kg is attached to the mid-point of a light elastic string, of natural length 0.4 m and modulus of elasticity 20 N. The ends of the elastic string are attached to two fixed points A and B which are on the same horizontal level, with AB = 0.6 m. The particle is held in the position shown, with AP = BP = 0.5 m, and released from rest. Find the initial acceleration of the particle and state its direction.

Solution:

$$(\uparrow)2T\cos\theta - 2g = 2a$$

$$\frac{4T}{5} - g = a$$

$$T = \frac{20 \times 0.6}{0.4} = 30$$

$$\frac{4}{5} \times 30 - 9.8 = a$$

$$14.2 = a$$

initial acceleration is 14.2 m s⁻² upwards

Elastic strings and springs Exercise B, Question 4

Question:

A particle of mass 2 kg is attached to one end P of a light elastic spring. The other end Q of the spring is attached to a fixed point O. The spring has natural length 1.5 m and modulus of elasticity 40 N. The particle is held at a point which is 1 m vertically above O and released from rest. Find the initial acceleration of the particle, stating its magnitude and direction.

Solution:

$$T = \frac{40 \times 0.5}{3}$$

$$T = \frac{40}{3}$$

So,
$$\frac{40}{3} - 19.6 = 2a$$

 $a = -3.13$

magnitude of initial acceleration is 3.13 m s⁻² and direction is downwards

Elastic strings and springs Exercise C, Question 1

Question:

An elastic spring has natural length 0.6 m and modulus of elasticity 8 N. Find the work done when the spring is stretched from its natural length to a length of 1 m.

Solution:

work done =
$$\frac{\lambda x^2}{2l} = \frac{8 \times 0.4^2}{2 \times 0.6}$$
$$= 1.06 J$$

Elastic strings and springs Exercise C, Question 2

Question:

An elastic spring, of natural length 0.8 m and modulus of elasticity of 4 N, is compressed to a length of 0.6 m. Find the elastic potential energy stored in the spring.

Solution:

work done =
$$\frac{\lambda x^2}{2l} = \frac{4 \times 0.2^2}{2 \times 0.8}$$
$$= 0.1 J$$

Elastic strings and springs Exercise C, Question 3

Question:

An elastic string has natural length 1.2 m and modulus of elasticity 10 N. Find the work done when the string is stretched from a length 1.5 m to a length 1.8 m.

Solution:

work done
$$= \frac{10 \times 0.6^{2}}{2 \times 1.2} - \frac{10 \times 0.3^{2}}{2 \times 1.2}$$
$$= \frac{10}{2.4} (0.6^{2} - 0.3^{2})$$
$$= \frac{10}{2.4} \times 0.9 \times 0.3$$
$$= 1.125 \text{ J}$$

Elastic strings and springs Exercise C, Question 4

Question:

An elastic spring has natural length 0.7 m and modulus of elasticity 20 N. Find the work done when the spring is stretched from a length

a 0.7 m to 0.9 m

b 0.8 m to 1.0 m

c 1.2 m to 1.4 m.

Note that your answer to a, b and c are all different.

Solution:

a
$$\frac{20}{2 \times 0.7} (0.2^2 - 0^2) = 0.571 \text{ J } (3 \text{ s.f.})$$

b
$$\frac{20}{2 \times 0.7} (0.3^2 - 0.1^2)$$

= $\frac{20}{1.4} \times 0.4 \times 0.2 = 1.14 \text{ J (3 s.f.)}$

c
$$\frac{20}{2 \times 0.7} (0.7^2 - 0.5^2)$$

= $\frac{20}{1.4} \times 1.2 \times 0.2 = 3.43 \text{ J } (3 \text{ s.f.})$

Elastic strings and springs Exercise C, Question 5

Question:

A light elastic spring has natural length 1.2 m and modulus of elasticity 10 N. One end of the spring is attached to a fixed point. A particle of mass 2 kg is attached to the other end and hangs in equilibrium. Find the energy stored in the spring.

Solution:

(†)
$$T = 2g$$

 T $\frac{10e}{1.2} = 2g$
 $e = \frac{2.4g}{10} = 0.24g$
energy stored $= \frac{10 \times (0.24g)^2}{2 \times 1.2}$
 $= 23.0 \text{ J} = 23 \text{ J} (2 \text{ s.f.})$

Elastic strings and springs Exercise C, Question 6

Question:

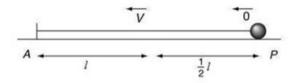
An elastic string has natural length a. One end is fixed. A particle of mass 2m is attached to the free end and hangs in equilibrium, with the length of the string 3a. Find the elastic potential energy stored in the string.

Solution:

$$(\uparrow)T = 2mg$$

$$\frac{\lambda \times 2a}{a} = 2mg$$

$$\Rightarrow \lambda = mg$$


$$E.E. = \frac{\lambda x^2}{2l} = \frac{mg(2a)^2}{2a} = 2mga$$

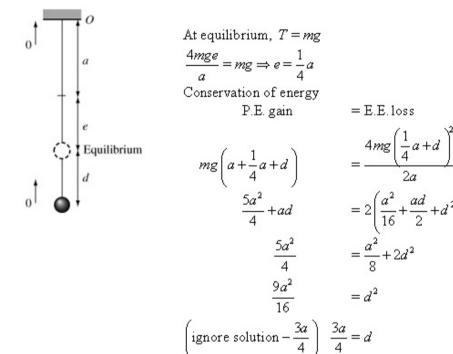
Elastic strings and springs Exercise D, Question 1

Question:

An elastic string, of natural length l and modulus of elasticity mg, has one end fixed to a point A on a smooth horizontal table. The other end is attached to a particle P of mass m. The particle is held at a point on the table with $AP = \frac{3l}{2}$ and is released. Find the speed of the particle when the string reaches its natural length.

Solution:

Conservation of energy K.E. gain = E.E. loss

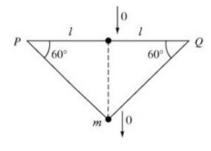

$$\frac{1}{2}mV^2 = \frac{mg\left(\frac{1}{2}l\right)^2}{2l}$$
$$V^2 = \frac{1}{4}gl$$
$$V = \frac{1}{2}\sqrt{gl}$$

Elastic strings and springs Exercise D, Question 2

Question:

A particle of mass m is suspended from a fixed point O by a light elastic string, of natural length a and modulus of elasticity 4mg. The particle is pulled vertically downwards a distance d from its equilibrium position and released from rest. If the particle just reaches O, find d.

Solution:



Elastic strings and springs Exercise D, Question 3

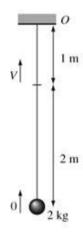
Question:

A light elastic spring of natural length 2l has its ends attached to two points P and Q which are at the same horizontal level. The length PQ is 2l. A particle of mass m is fastened to the midpoint of the spring and is held at the mid-point of PQ. The particle is released from rest and first comes to instantaneous rest when both parts of the string make an angle of 60° with the line PQ. Find the modulus of elasticity of the spring.

Solution:

Conservation of energy P.E. loss = E.E. gain
$$mgl \tan 60^{\circ} = \frac{2 \times \lambda \left(\frac{l}{\cos 60^{\circ}} - l\right)^{2}}{2l}$$
$$mgl\sqrt{3} = \lambda l$$
modulus is $mg\sqrt{3}$

Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise D, Question 4

Question:

A light elastic string, of natural length 1 m and modulus of elasticity 21.6 N has one end attached to a fixed point O. A particle of mass 2 kg is attached to the other end. The particle is held at a point which is 3 m vertically below O and released from rest. Find

- a the speed of the particle when the string first becomes slack,
- b the distance from O when the particle first comes to rest.

Solution:

a Conservation of energy

$$\frac{1}{2} \times 2 \times V^{2} + 2g \times 2 = \frac{21.6 \times 2^{2}}{2 \times 1}$$

$$V^{2} = 43.2 - 39.2$$

$$= 4$$

$$V = 2 \text{ m s}^{-1}$$

Conservation of energy

$$\frac{1}{2}mV^2 = mgd$$

$$2 = gd$$

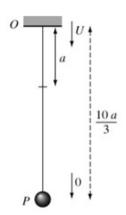
$$0.20 \text{ m} (2 \text{ s.f.}) = \frac{2}{g} = d$$

distance from O is 0.80 m (2 s.f.)

Elastic strings and springs Exercise D, Question 5

Question:

A particle P is attached to one end of a light elastic string of natural length a. The other end of the string is attached to a fixed point O. When P hangs at rest in equilibrium, the distance OP is $\frac{5a}{3}$. The particle is now projected vertically downwards from O with speed U and first comes to instantaneous rest at a distance $\frac{10a}{3}$ below O. Find U in terms of a and g.


Solution:

$$(\uparrow)T = mg$$

$$\frac{\lambda}{a} \times \frac{2a}{3} = mg$$

$$\lambda = \frac{3mg}{2}$$

$$K.E.1oss + P.E.1oss = E.E.gain$$

$$\frac{1}{2}mU^{2} + mg\frac{10a}{3} = \frac{3mg}{2}\frac{\left(\frac{7a}{3}\right)^{2}}{2a}$$

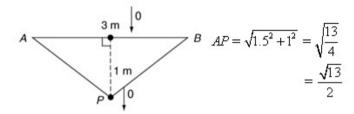
$$\frac{U^{2}}{2} + \frac{10ag}{3} = \frac{3g}{4a}\frac{49a^{2}}{9}$$

$$\frac{U^{2}}{2} = \frac{49ag}{12} - \frac{10ag}{3}$$

$$U^{2} = \frac{9ag \times 2}{12}$$

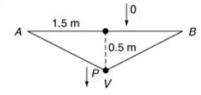
$$U = \sqrt{\frac{3ag}{2}}$$

Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise D, Question 6

Question:

A particle P of mass 1 kg is attached to the mid-point of a light elastic string, of natural length 3 m and modulus λ N. The ends of the string are attached to two points A and B on the same horizontal level with AB = 3 m. The particle is held at the mid-point of AB and released from rest. The particle falls vertically and comes to instantaneous rest at a point which is 1 m below the mid-point of AB. Find a the value of λ ,


b the speed of P when it is 0.5 m below the initial position.

Solution:

a P.E. loss = E.E. gain

$$g \times 1 = \frac{2\lambda \left(\frac{\sqrt{13}}{2} - \frac{3}{2}\right)^2}{2 \times 1.5}$$
$$\lambda = \frac{2 \times 3g}{(\sqrt{13} - 3)^2} = 80.176 \times 2$$
$$= 160 \text{ N (2 s.f.)}$$

$$AP = \sqrt{1.5^2 + 0.5^2} = \frac{\sqrt{10}}{2}$$

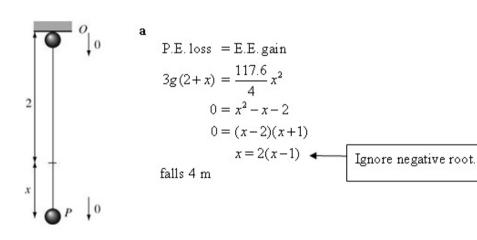
K.E. gain + E.E. gain = P.E. loss

$$\frac{1}{2}V^{2} + \frac{2\lambda \left(\frac{\sqrt{10}}{2} - \frac{3}{2}\right)^{2}}{2 \times 1.5} = 0.5g$$

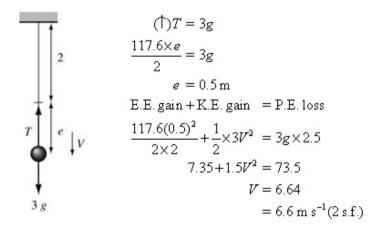
$$V^{2} = g - \frac{(\sqrt{10} - 3)^{2}}{3} \times \lambda$$

$$V = 2.896 = 2.9 \text{ m s}^{-1} (2 \text{ s.f.})$$

Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise D, Question 7

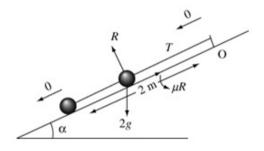
Ouestion:


A light elastic string of natural length 2 m and modulus of elasticity 117.6 N has one end attached to a fixed point O. A particle P of mass 3 kg is attached to the other end. The particle is held at O and released from rest.

- a Find the distance fallen by P before it first comes to rest.
- **b** Find the greatest speed of P during the fall.

Solution:

b Greatest speed at equilibrium position



Elastic strings and springs Exercise D, Question 8

Question:

A particle P of mass 2 kg is attached to one end of a light elastic string of natural length 1 m and modulus of elasticity 40 N. The other end of the string is fixed to a point O on a rough plane which is inclined at an angle α , where $\tan \alpha = \frac{3}{4}$. The particle is held at O and released from rest. Given that P comes to rest after moving 2 m down the plane, find the coefficient of friction between the particle and the plane.

Solution:

$$(\nwarrow)R = 2g\cos\alpha = \frac{8g}{5}$$

Work done against friction = P.E. loss - E.E. gain

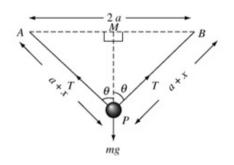
$$\mu \frac{8g}{5} \times 2 = 2g \times 2\sin\alpha - \frac{40 \times 1^2}{2 \times 1}$$

$$\mu \frac{16g}{5} = \frac{12g}{5} - 20$$

$$\mu = \frac{12g - 100}{16g}$$

$$= 0.11(2 \text{ s.f.})$$

Elastic strings and springs Exercise E, Question 1


Question:

A particle of mass m is supported by two light elastic strings, each of natural length a and modulus of elasticity $\frac{15mg}{16}$. The other ends of the strings are attached to two

fixed points A and B where A and B are in the same horizontal line with AB=2a. When the particle hangs at rest in equilibrium below AB, each string makes an angle θ with the vertical.

- **a** Verify that $\cos \theta = \frac{4}{5}$.
- b How much work must be down to raise the particle to the mid-point of AB?

Solution:

$$(\uparrow)2T\cos\theta=mg\quad \textcircled{1}$$

by Hooke's Law

$$T = \frac{15mgx}{16a} \quad ②$$

$$\sin\theta = \frac{a}{a+x} \quad \Im$$

than
$$\frac{3}{5} = \frac{a}{a + \frac{2a}{3}}$$
 from ③

which is true.

b work done on particle = overall gain in energy

$$= P.E. gain - E.E. loss$$

$$PM = (a+x)\cos\theta$$
$$= \left(a + \frac{2a}{3}\right)\frac{4}{5}$$
$$= \frac{4a}{3}$$

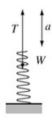
$$\therefore$$
 P.E. gain = $mg \frac{4a}{3}$

E.E.loss = initial E.E. - final E.E.

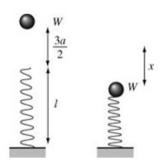
$$= \frac{15mg}{16 \times 2a} \left(2x \left(\frac{2a}{3} \right)^2 - 0^2 \right)$$
$$= \frac{15mg4a^2 \times 2}{16 \times 2a \times 9}$$
$$= \frac{5mga}{12}$$

So, work done =
$$\frac{4mga}{3} - \frac{5mga}{12}$$
$$= \frac{mga}{12}(16 - 5)$$
$$= \frac{11mga}{12}$$

Edexcel AS and A Level Modular Mathematics


Elastic strings and springs Exercise E, Question 2

Ouestion:


A light elastic spring is such that a weight of magnitude Wresting on the spring produces a compression a. The weight W is allowed to fall onto the spring from a height of $\frac{3a}{2}$ above it. Find the maximum compression of the spring in the subsequent motion.

Solution:

Let l be the natural length of the spring. Let λ be the modulus of the spring.

$$(\uparrow)T = W$$
by Hooke's Law,
$$T = \frac{\lambda a}{l}$$
$$\therefore W = \frac{\lambda a}{l} \text{ i.e. } \frac{W}{a} = \frac{\lambda}{l}$$

Using conservation of energy,

P.E. loss of W = E.E. gain of spring

$$W\left(\frac{3a}{2} + x\right) = \frac{\lambda x^2}{2l}$$
so,
$$W\left(\frac{3a}{2} + x\right) = \frac{Wx^2}{2a}$$

$$3a^2 + 2ax = x^2$$

$$0 = x^2 - 2ax - 3a^2$$

$$0 = (x - 3a)(x + a)$$

$$\therefore x = 3a \text{ or } -a$$

∴ maximum compression is 3a

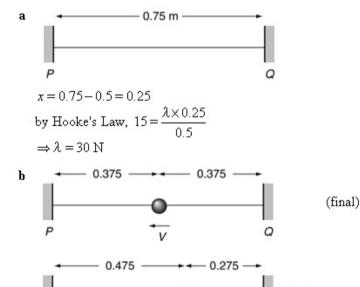
Substitute for $\frac{\lambda}{l}$ from above.

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise E, Question 3

Question:

A light elastic string of natural length 0.5 m is stretched between two points P and Q on a smooth horizontal table. The distance PQ is 0.75 m and the tension in the string is 15 N


(initial)

a Find the modulus of elasticity of the string.

A particle of mass 0.5 kg is attached to the mid-point of the string. The particle is pulled 0.1 m towards Q and released from rest.

b Find the speed of the particle as it passes through the mid-point of PQ.

Solution:

E.E. loss = initial E.E. - final E.E.
=
$$\frac{30}{2 \times 0.25} \{0.225^2 + 0.025^2 - 2 \times 0.125^2\}$$

= $60(0.05125 - 0.03125)$
= 1.2 J
 $\frac{1}{2} \times \frac{1}{2} \times v^2 = 1.2$
So, $v^2 = 4.8$
 $v = 2.19 \,\text{m s}^{-1} (3 \,\text{s.f.})$

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise E, Question 4

Question:

A particle P of mass m is attached to two strings AP and BP. The points A and B are on the same horizontal level and $AB = \frac{5a}{4}$.

The string AP is inextensible and $AP = \frac{3a}{4}$.

The string BP is elastic and BP = a.

The modulus of elasticity of BP is λ . Show that the natural length of BP is

Solution:

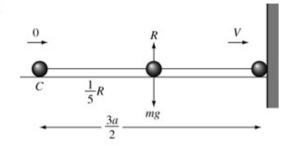
$$\triangle ABP$$
 is 3, 4, 5 so $A\hat{P}B = 90^{\circ}$.
(\nearrow , along PB) $T_2 = mg\cos\theta = \frac{3mg}{5}$
by Hooke's Law, $T_2 = \frac{\lambda(-l+a)}{l}$

So,
$$\lambda \frac{(-l+a)}{l} = \frac{3mg}{5}$$
$$5\lambda(-l+a) = 3mgl$$
$$5\lambda l + 3mgl = 5\lambda a$$
$$l(5\lambda + 3mg) = 5\lambda a$$
$$l = \frac{5\lambda a}{(5\lambda + 3mg)}$$

Elastic strings and springs Exercise E, Question 5

Question:

A light elastic string, of natural length a and modulus of elasticity 5mg, has one end attached to the base of a vertical wall. The other end of the string is attached to a small ball. The ball is held at a distance $\frac{3a}{2}$ from the wall, on a rough horizontal plane, and released from rest. The coefficient of friction between the ball and the plane is $\frac{1}{5}$.


a Find, in terms of a and g, the speed V of the ball as it hits the wall.

The ball rebounds from the wall with speed $\frac{2V}{5}$.

b Find the distance from the wall at which the ball comes to rest.

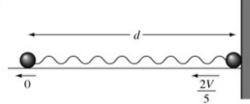
Solution:

a

$$(↑)R = mg$$
∴ Friction = $\frac{1}{5}mg$

work done against friction = overallloss in energy

$$= E.E. loss - K.E. gain$$


$$\frac{1}{5} \text{ mg} \frac{3a}{2} = \frac{5 \text{ mg} \left(\frac{a}{2}\right)^2}{2a} - \frac{1}{2} \text{ mV}^2$$

$$\frac{3ag}{5} = \frac{5ag}{4} - V^2$$

$$V^2 = \frac{5ag}{4} - \frac{3ag}{5} = \frac{ag(25 - 12)}{20}$$

$$V = \sqrt{\frac{13ag}{20}}$$

b

Friction will be same.
Assume string is still slack when ball

comes to rest.

Work done against friction = K.E. loss

$$\frac{1}{5}mg \ d = \frac{1}{2}m\left(\frac{2V}{5}\right)^2 = \frac{1}{2}m\frac{4V^2}{25}$$
$$\frac{1}{5}gd = \frac{1}{2} \times \frac{4}{25} \times \frac{13ag}{20}$$
$$d = \frac{13a}{50}$$

As d is less than a, the assumption that the string is still slack is valid.

Elastic strings and springs Exercise E, Question 6

Ouestion:

a Using integration, show that the work done in stretching a light elastic string of natural length l and modulus of elasticity λ , from length l to length (l+x) is $\frac{\lambda x^2}{2l}$.

b The same string is stretched from a length (l+a) to a length (l+b) where $b \ge a$. Show that the work done is the product of the mean tension and the distance moved.

Solution:

a work done =
$$\int_{0}^{x} T \, ds = \int_{0}^{x} \frac{\lambda s}{l} \, ds$$
$$= \frac{\lambda}{2l} \left[s^{2} \right]_{0}^{x}$$
$$= \frac{\lambda x^{2}}{2l}$$

b work done = E.E. gain of string

$$= \frac{\lambda}{2l}(b^2 - a^2)$$

$$= \frac{\lambda}{2l}(b+a)(b-a)$$

$$= \frac{1}{2}\left(\frac{\lambda b}{l} + \frac{\lambda a}{l}\right)(b-a)$$

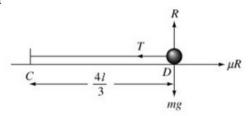
$$= \frac{1}{2}(T_b + T_a)(b-a)$$

= mean of tensions × distance moved

Elastic strings and springs Exercise E, Question 7

Question:

A light elastic string has natural length l and modulus 2mg. One end of the string is attached to a particle P of mass m. The other end is attached to a fixed point C on a rough horizontal plane. Initially P is at rest at a point D on the plane where $CD = \frac{4l}{3}$.

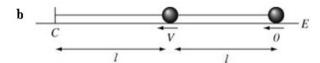

a Given that P is in limiting equilibrium, find the coefficient of friction between P and the plane.

The particle P is now moved away from C to a point E on the plane where CE = 2l.

- **b** Find the speed of P when the string returns to its natural length.
- c Find the total distance moved by P before it comes to rest.

Solution:

a



$$(\uparrow)R = mg \quad (\rightarrow)\mu R = T$$

$$\mu mg = T$$

by Hooke's Law,

$$T = \frac{2mg}{l} \frac{l}{3} = \frac{2mg}{3}$$
$$\therefore \mu mg = \frac{2mg}{3}$$
$$\mu = \frac{2}{3}$$

work done against friction = overall loss in energy

$$= E.E. loss - K.E. gain$$

$$\frac{2}{3}mg \ l = \frac{2mgl^2}{2l} - \frac{1}{2}mV^2$$

$$\frac{1}{2}V^2 = gl - \frac{2}{3}gl - \frac{1}{3}gl$$

$$V^2 = \frac{2}{3}gl$$

$$V = \sqrt{\frac{2gl}{3}}$$

c String is now slack

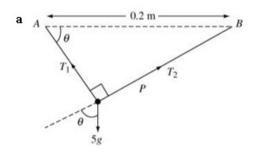
work done against friction = K.E. loss

$$\frac{2}{3}mg \ d = \frac{1}{2}m \times \frac{2}{3}gl$$
$$d = \frac{1}{2}l$$

 \therefore total distance travelled is $\frac{3l}{2}$

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise E, Question 8


Question:

A light elastic string of natural length 0.2 m has its ends attached to two fixed points A and B which are on the same horizontal level with AB = 0.2 m. A particle of mass 5 kg is attached to the string at the point P where AP = 0.15 m. The system is released and P hangs in equilibrium below AB with $A\hat{P}B = 90^{\circ}$.

a If $B\hat{A}P = \theta$, show that the ratio of the extension of AP and BP is $\frac{4\cos\theta - 3}{4\sin\theta - 1}$.

b Hence show that $\cos \theta (4\cos \theta - 3) = 3\sin \theta (4\sin \theta - 1)$.

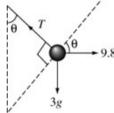
Solution:

extension of $AP = 0.2\cos\theta - 0.15$ extension of $BP = 0.2\sin\theta - 0.05$ \therefore ratio is $\frac{0.2\cos\theta - 0.15}{0.2\sin\theta - 0.05} \times \frac{20}{20}$ $= \frac{4\cos\theta - 3}{4\sin\theta - 1}$

b (/) along
$$PB: T_2 = 5g \cos \theta$$

(/) along $PA: T_1 = 5g \sin \theta$
so, $\frac{T_2}{T_1} = \frac{\cos \theta}{\sin \theta}$
 $\frac{\lambda x_2}{0.05} \times \frac{0.15}{\lambda x_1} = \frac{\cos \theta}{\sin \theta}$
 $\frac{3x_2}{x_1} = \frac{\cos \theta}{\sin \theta}$
i.e. $\frac{x_1}{x_2} = \frac{3\sin \theta}{\cos \theta}$
i.e. $\frac{4\cos \theta - 3}{4\sin \theta - 1} = \frac{3\sin \theta}{\cos \theta}$
 $3\sin \theta (4\sin \theta - 1) = \cos \theta (4\cos \theta - 3)$

Elastic strings and springs Exercise E, Question 9


Question:

A particle of mass 3 kg is attached to one end of a light elastic string, of natural length 1 m and modulus of elasticity 14.7 N. The other end of the string is attached to a fixed point. The particle is held in equilibrium by a horizontal force of magnitude 9.8 N with the string inclined to the vertical at an angle θ .

- a Find the value of θ .
- b Find the extension of the string.
- c If the horizontal force is removed, find the magnitude of the least force that will keep the string inclined at the same angle.

Solution:

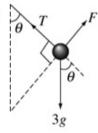
(perpendicular to string)

$$9.8\cos\theta = 3g\sin\theta$$

$$\frac{1}{1-\cos\theta}$$

$$\frac{1}{3} = \tan \theta$$

$$\theta = \tan^{-1}\left(\frac{1}{3}\right) = 18.4^{\circ}$$


b
$$(\rightarrow) T \sin \theta = 9.8$$

$$T = 9.8\sqrt{10}$$

$$\frac{14.7 \times x}{1} = 9.8\sqrt{10}$$

$$x = \frac{2\sqrt{10}}{3} \text{ m} \approx 2.1 \text{ m} (2 \text{ s.f.})$$

least force will be perpendicular to string $(\nearrow)F=3g\sin\theta$

$$(\nearrow)F = 3g\sin\theta$$

$$=\frac{3g}{\sqrt{10}}$$
 N

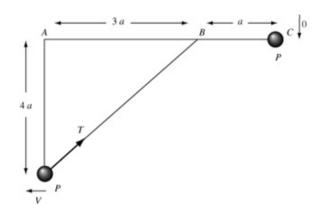
$$=\frac{3g\sqrt{10}}{10}\,\mathrm{N}$$

$$= 9.3 \,\mathrm{N} \, (2 \,\mathrm{s.f.})$$

Edexcel AS and A Level Modular Mathematics

Elastic strings and springs Exercise E, Question 10

Question:


Two points A and B are on the same horizontal level with AB = 3a. A particle P of mass m is joined to A by a light inextensible string of length 4a and is joined to B by a

light elastic string, of natural length a and modulus of elasticity $\frac{mg}{4}$. The particle P is

held at the point C, on AB produced, such that BC = a and both strings are taut. The particle P is released from rest.

- a Show that when AP is vertical the speed of P is $2\sqrt{ga}$.
- b Find the tension in the elastic string in this position.

Solution:

a by conservation of energy,

K.E. gain + E.E. gain = P.E. loss

$$\frac{1}{2}mv^{2} + \frac{mg}{4}\frac{x^{2}}{2a} = mg4a$$

$$BP = 5a \ (3, 4, 5 \ \Delta)$$

So,
$$x = 4a$$

$$\therefore \frac{1}{2}mv^2 + \frac{mg}{4} \cdot \frac{16a^2}{2a} = mg \ 4a$$

$$v^2 + 4ga = 8ga$$

$$v^2 = 4ga$$

$$v = 2\sqrt{ga}$$

$$\mathbf{b} \quad x = 4a : T = \frac{mg}{4} \times \frac{4a}{a}$$
$$= mg$$