Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise A, Question 1

Question:

Draw diagrams, as in Examples 1 and 2, to show the following angles. Mark in the acute angle that *OP* makes with the *x*-axis.

- (a) -80°
- (b) 100°
- (c) 200°
- (d) 165°
- (e) -145°
- (f) 225°
- (g) 280°
- (h) 330°
- (i) -160°
- (j) -280 °
- (k) $\frac{3\pi}{4}$
- (1) $\frac{7\pi}{6}$
- $(m) \frac{5\pi}{3}$
- $(n) \frac{5\pi}{8}$
- (o) $\frac{19\pi}{9}$

Solution:

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise A, Question 2

Question:

State the quadrant that *OP* lies in when the angle that *OP* makes with the positive *x*-axis is:

- (a) 400°
- (b) 115°
- (c) -210°
- (d) 255°
- (e) -100°
- (f) $\frac{7\pi}{8}$
- (g) $-\frac{11\pi}{6}$
- (h) $\frac{13\pi}{7}$

Solution:

© Pearson Education Ltd 2008

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise B, Question 1

Question:

(Note: do not use a calculator.)

Write down the values of:

- (a) $\sin (-90)^{\circ}$
- (b) $\sin 450^{\circ}$
- (c) $\sin 540^{\circ}$
- (d) $\sin (-450)^{\circ}$
- (e) $\cos (-180)^{\circ}$
- (f) $\cos (-270)^{\circ}$
- (g) cos 270 $^{\circ}$
- (h) cos 810°
- (i) tan 360 $^{\circ}$
- (j) tan $(-180)^{\circ}$

Solution:

(a) $O \longrightarrow X$ -90° $P \times (0,-r)$

$$\sin \left(-90 \right) \circ = \frac{-r}{r} = -1$$

$$\sin 450 \circ = \frac{r}{r} = 1$$

$$\sin 540 \circ = \frac{0}{r} = 0$$

$$\sin \left(-450 \right) \circ = \frac{-r}{r} = -1$$

$$\cos \left(-180 \right) \circ = \frac{-r}{r} = -1$$

$$\cos \left(-270 \right) \circ = \frac{0}{r} = 0$$

$$\cos 270 \circ = \frac{0}{r} = 0$$

$$\cos 810^{\circ} = \frac{0}{r} = 0$$

$$\tan 360^{\circ} = \frac{0}{r} = 0$$

$$\tan \left(-180 \right) \circ = \frac{0}{-r} = 0$$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise B, Question 2

Question:

(Note: do not use a calculator.)

Write down the values of the following, where the angles are in radians:

(a)
$$\sin \frac{3\pi}{2}$$

(b)
$$\sin \left(-\frac{\pi}{2}\right)$$

(c)
$$\sin 3\pi$$

(d)
$$\sin \frac{7\pi}{2}$$

(f)
$$\cos \pi$$

(g) cos
$$\frac{3\pi}{2}$$

(h)
$$\cos \left(-\frac{3\pi}{2}\right)$$

(i)
$$\tan \pi$$

(j) tan
$$(-2\pi)$$

Solution:

$$\sin \frac{3\pi}{2} = \frac{-r}{r} = -1$$

$$\sin \left(\frac{-\pi}{2} \right) = \frac{-r}{r} = -1$$

$$\sin 3\pi = \frac{0}{r} = 0$$

$$\sin \frac{7\pi}{2} = \frac{-r}{r} = -1$$

$$\cos 0^{\circ} = \frac{r}{r} = 1$$

$$\cos \pi = \frac{-r}{r} = -1$$

$$\cos \frac{3\pi}{2} = \frac{0}{r} = 0$$

$$\cos \left(-\frac{3\pi}{2} \right) = \frac{0}{r} = 0$$

$$\tan \pi = \frac{0}{-r} = 0$$

$$\tan \left(-2\pi \right) = \frac{0}{r} = 0$$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise C, Question 1

Question:

(Note: Do not use a calculator.)

By drawing diagrams, as in Example 6, express the following in terms of trigonometric ratios of acute angles:

- (a) sin 240 $^{\circ}$
- (b) $\sin (-80)^{\circ}$
- (c) $\sin (-200)^{\circ}$
- (d) sin 300 °
- (e) sin 460 °
- (f) cos 110 $^{\circ}$
- (g) cos 260 $^{\circ}$
- (h) $\cos (-50)^{\circ}$
- (i) $\cos (-200)^{\circ}$
- (j) cos 545 °
- (k) tan 100 $^{\circ}$
- (1) tan 325 $^{\circ}$
- (m) tan $(-30)^{\circ}$
- (n) tan $(-175)^{\circ}$
- (o) tan 600 $^{\circ}$
- (p) $\sin \frac{7\pi}{6}$
- (q) cos $\frac{4\pi}{3}$
- (r) cos $\left(-\frac{3\pi}{4}\right)$
- (s) $\tan \frac{7\pi}{5}$

(t)
$$\tan \left(-\frac{\pi}{3}\right)$$

(u)
$$\sin \frac{15\pi}{16}$$

(v) cos
$$\frac{8\pi}{5}$$

(w)
$$\sin \left(-\frac{6\pi}{7} \right)$$

(x)
$$\tan \frac{15\pi}{8}$$

Solution:

 60° is the acute angle. In third quadrant sin is - ve. So sin $240^{\circ} = -$ sin 60°

 80° is the acute angle.

In fourth quadrant sin is - ve. So sin (-80) ° = - sin 80 °

 20° is the acute angle. In second quadrant sin is +ve. So sin $(-200)^{\circ} = + \sin 20^{\circ}$

 60° is the acute angle. In fourth quadrant sin is - ve. So sin $300^{\circ} = -\sin 60^{\circ}$

 80° is the acute angle. In second quadrant sin is +ve. So sin $460^{\circ} = + \sin 80^{\circ}$

 70° is the acute angle. In second quadrant cos is - ve. So cos $110^{\circ} = -\cos 70^{\circ}$

 80° is the acute angle. In third quadrant cos is - ve. So cos $260^{\circ} = -\cos 80^{\circ}$

 50° is the acute angle. In fourth quadrant cos is +ve. So cos $~(~-50~)~^{\circ}~=~+$ cos $~50~^{\circ}$

 20° is the acute angle. In second quadrant cos is - ve. So cos $(-200)^{\circ} = -\cos 20^{\circ}$

 5° is the acute angle. In third quadrant cos is - ve. So cos $545^{\circ} = -\cos 5^{\circ}$

 80° is the acute angle. In second quadrant tan is - ve. So tan $100^{\circ} = -$ tan 80°

 35° is the acute angle. In fourth quadrant tan is - ve. So tan $325^{\circ} = -$ tan 35°

 30° is the acute angle. In fourth quadrant tan is - ve. So tan $(-30)^{\circ} = -\tan 30^{\circ}$

 5° is the acute angle. In third quadrant tan is +ve. So tan $\,$ ($\,$ - $\,$ 175) $\,$ $^{\circ}$ = $\,$ + tan $\,$ 5 $\,^{\circ}$

 60° is the acute angle. In third quadrant tan is +ve. So tan $600^{\circ} = + \tan 60^{\circ}$

 $\frac{\pi}{6}$ is the acute angle.

In third quadrant $\sin is - ve$.

So
$$\sin \frac{7\pi}{6} = -\sin \frac{\pi}{6}$$

 $\frac{\pi}{3}$ is the acute angle.

In third quadrant cos is - ve.

So
$$\cos \frac{4\pi}{3} = -\cos \frac{\pi}{3}$$

 $\frac{\pi}{4}$ is the acute angle.

In third quadrant \cos is - ve.

So
$$\cos \left(-\frac{3}{4}\pi \right) = -\cos \frac{\pi}{4}$$

 $\frac{2\pi}{5}$ is the acute angle.

In third quadrant tan is +ve.

So
$$\tan \frac{7\pi}{5} = + \tan \frac{2\pi}{5}$$

 $\frac{\pi}{3}$ is the acute angle.

In fourth quadrant tan is - ve.

So
$$\tan \left(-\frac{\pi}{3}\right) = -\tan \frac{\pi}{3}$$

 $\frac{\pi}{16}$ is the acute angle.

In second quadrant sin is +ve.

So
$$\sin \frac{15\pi}{16} = + \sin \frac{\pi}{16}$$

 $\frac{2}{5}\pi$ is the acute angle.

In fourth quadrant cos is +ve.
So cos
$$\frac{8}{5}\pi = +\cos \frac{2}{5}\pi$$

 $\frac{\pi}{7}$ is the acute angle.

In third quadrant $\sin is - ve$.

So
$$\sin \left(-\frac{6\pi}{7}\right) = -\sin \frac{\pi}{7}$$

 $\frac{\pi}{8}$ is the acute angle.

In fourth quadrant tan is – ve.

So
$$\tan \frac{15\pi}{8} = -\tan \frac{\pi}{8}$$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise C, Question 2

Question:

(Note: Do not use a calculator.)

Given that θ is an acute angle measured in degrees, express in terms of $\sin \theta$:

- (a) $\sin (-\theta)$
- (b) $\sin (180^{\circ} + \theta)$
- (c) $\sin (360^{\circ} \theta)$
- (d) $\sin (180^{\circ} + \theta)$
- (e) $\sin (-180^{\circ} + \theta)$
- (f) $\sin (-360^{\circ} + \theta)$
- (g) $\sin (540^{\circ} + \theta)$
- (h) sin $(720^{\circ} \theta)$
- (i) $\sin (\theta + 720^{\circ})$

Solution:

(a)

 $\sin is - ve \text{ in this quadrant.}$ So $\sin (-\theta) = -\sin \theta$

sin is - ve in this quadrant. So sin $(180 \circ + \theta) = -\sin \theta$

sin is – ve in this quadrant. So sin $(360 \circ -\theta) = -\sin \theta$

sin is +ve in this quadrant. So sin - (180 $^{\circ}$ + θ) = + sin θ

sin is - ve in this quadrant. So sin $(-180^{\circ} + \theta) = -\sin \theta$

sin is +ve in this quadrant. So sin $(-360^{\circ} + \theta) = + \sin \theta$

sin is - ve in this quadrant. So sin $(540 \circ + \theta) = -\sin \theta$

sin is – ve in this quadrant. So sin $(720 \circ -\theta) = -\sin \theta$

(i) θ + 720 $^\circ$ is in the first quadrant with θ to the horizontal. So sin $~(~\theta$ + 720 $^\circ~)~=~+\sin~\theta$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise C, Question 3

Question:

(Note: Do not use a calculator.)

Given that θ is an acute angle measured in degrees, express in terms of $\cos \theta$ or $\tan \theta$:

- (a) cos $(180^{\circ} \theta)$
- (b) cos ($180^{\circ} + \theta$)
- (c) cos $(-\theta)$
- (d) $\cos (180^{\circ} \theta)$
- (e) cos $(\theta 360^{\circ})$
- (f) cos $(\theta 540^{\circ})$
- (g) tan $(-\theta)$
- (h) tan $(180^{\circ} \theta)$
- (i) tan $(180^{\circ} + \theta)$
- (j) tan $(-180^{\circ} + \theta)$
- (k) tan $(540^{\circ} \theta)$
- (1) tan $(\theta 360^{\circ})$

Solution:

- (a) 180 ° $-\theta$ is in the second quadrant where cos is ve, and the angle to the horizontal is θ , so cos $(180 \circ -\theta) = -\cos\theta$
- (b) 180 $^{\circ}$ + θ is in the third quadrant, at θ to the horizontal, so cos (180 $^{\circ}$ + θ) = -cos θ
- (c) $-\theta$ is in the fourth quadrant, at θ to the horizontal, so cos $(-\theta) = +\cos\theta$
- (d) $-180^{\circ} + \theta$ is in the third quadrant, at θ to the horizontal, so cos $(-180^{\circ} + \theta) = -\cos \theta$
- (e) $\theta 360$ ° is in the first quadrant, at θ to the horizontal, so cos ($\theta 360$ °) = $+\cos\theta$
- (f) θ 540 ° is in the third quadrant, at θ to the horizontal, so cos (θ 540 °) = cos θ
- (g) tan $(-\theta) = -\tan \theta$ as $-\theta$ is in the fourth quadrant.

- (h) tan $(180^{\circ} \theta) = -\tan \theta$ as $(180^{\circ} \theta)$ is in the second quadrant.
- (i) tan $(180^{\circ} + \theta) = + \tan \theta$ as $(180^{\circ} + \theta)$ is in the third quadrant.
- (j) tan $(-180^{\circ} + \theta) = + \tan \theta$ as $(-180^{\circ} + \theta)$ is in the third quadrant.
- (k) tan $(540^{\circ} \theta) = -\tan \theta$ as $(540^{\circ} \theta)$ is in the second quadrant.
- (l) tan $(\theta 360^{\circ}) = + \tan \theta$ as $(\theta 360^{\circ})$ is in the first quadrant.
- © Pearson Education Ltd 2008

Graphics of trigonometric functions Exercise C, Question 4

Question:

(Note: Do not use a calculator.)

A function f is an even function if $f(-\theta) = f(\theta)$.

A function f is an odd function if $f(-\theta) = -f(\theta)$

Using your results from questions 2(a), 3(c) and 3(g), state whether $\sin \theta$, $\cos \theta$ and $\tan \theta$ are odd or even functions.

Solution:

```
As \sin (-\theta) = -\sin \theta (question 2a) \sin \theta is an odd function.
```

As $\cos (-\theta) = +\cos \theta$ (question 3c) $\cos \theta$ is an even function.

As $\tan (-\theta) = -\tan \theta$ (question 3g) $\tan \theta$ is an odd function.

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise D, Question 1

Question:

Express the following as trigonometric ratios of either 30°, 45° or 60°, and hence find their exact values.

- (a) sin 135 °
- (b) $\sin (-60^{\circ})$
- (c) sin 330 °
- (d) sin 420 °
- (e) $\sin (-300^{\circ})$
- (f) cos 120 °
- (g) cos 300°
- (h) cos 225 $^{\circ}$
- (i) $\cos (-210^{\circ})$
- (j) cos 495 °
- (k) tan 135 $^{\circ}$
- (l) tan (-225°)
- (m) tan 210°
- (n) tan 300 $^{\circ}$
- (o) tan (-120°)

Solution:

(a) $\sin 135^{\circ} = + \sin 45^{\circ}$ (135° is in the second quadrant at 45° to the horizontal)

So sin 135 ° =
$$\frac{\sqrt{2}}{2}$$

(b) $\sin (-60)^{\circ} = -\sin 60^{\circ} (-60^{\circ} \text{ is in the fourth quadrant at } 60^{\circ} \text{ to the horizontal})$

So
$$\sin \left(-60 \right) \circ = -\frac{\sqrt{3}}{2}$$

(c) sin 330 $^{\circ} = -\sin 30 \,^{\circ}$ (330 $^{\circ}$ is in the fourth quadrant at 30 $^{\circ}$ to the horizontal)

So sin 330 ° =
$$-\frac{1}{2}$$

(d) $\sin 420^{\circ} = + \sin 60^{\circ}$ (on second revolution)

So sin 420 ° =
$$\frac{\sqrt{3}}{2}$$

(e)
$$\sin (-300)^\circ = + \sin 60^\circ (-300^\circ)$$
 is in the first quadrant at 60° to the horizontal)

So sin
$$\left(-300\right)^{\circ} = \frac{\sqrt{3}}{2}$$

(f) cos
$$120^{\circ} = -\cos 60^{\circ}$$
 (120° is in the second quadrant at 60° to the horizontal)

So cos 120 ° =
$$-\frac{1}{2}$$

(g)
$$\cos 300^{\circ} = + \cos 60^{\circ}$$
 (300° is in the fourth quadrant at 60° to the horizontal)

So cos 300 ° =
$$\frac{1}{2}$$

(h) cos 225
$$^{\circ}$$
 = $-\cos 45 ^{\circ}$ (225 $^{\circ}$ is in the third quadrant at 45 $^{\circ}$ to the horizontal)

So cos 225 ° =
$$-\frac{\sqrt{2}}{2}$$

(i) cos (
$$-210^{\circ}$$
) = $-\cos 30^{\circ}$ (-210° is in the second quadrant at 30° to the horizontal)

So cos
$$\left(-210^{\circ}\right) = -\frac{\sqrt{3}}{2}$$

(j)
$$\cos 495^{\circ} = -\cos 45^{\circ}$$
 (495° is in the second quadrant at 45° to the horizontal)

So cos 495 ° =
$$-\frac{\sqrt{2}}{2}$$

(k) tan
$$135^{\circ} = -\tan 45^{\circ}$$
 (135° is in the second quadrant at 45° to the horizontal)

So tan 135
$$^{\circ} = -1$$

(l) tan (
$$-225\,^\circ$$
) = $-$ tan 45 $^\circ$ ($-225\,^\circ$ is in the second quadrant at 45 $^\circ$ to the horizontal) So tan ($-225\,^\circ$) = -1

So
$$\tan (-225^{\circ}) = -1$$

(m) tan
$$210^{\circ} = + \tan 30^{\circ}$$
 (210° is in the third quadrant at 30° to the horizontal)

So tan 210 ° =
$$\frac{\sqrt{3}}{3}$$

(n) tan 300
$$^{\circ} = -\tan 60 ^{\circ}$$
 (300 $^{\circ}$ is in the fourth quadrant at 60 $^{\circ}$ to the horizontal)

So tan 300 ° =
$$-\sqrt{3}$$

(o) tan (
$$-120^{\circ}$$
) = $+$ tan 60° (-120° is in the third quadrant at 60° to the horizontal)

So tan
$$(-120^{\circ}) = \sqrt{3}$$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise D, Question 2

Question:

In Section 8.3 you saw that $\sin 30^\circ = \cos 60^\circ$, $\cos 30^\circ = \sin 60^\circ$, and $\tan 60^\circ = \frac{1}{\tan 30^\circ}$. These are particular examples of the general results: $\sin (90^\circ - \theta) = \cos \theta$, and $\cos (90^\circ - \theta) = \sin \theta$, and $\tan (90^\circ - \theta) = \frac{1}{\tan \theta}$, where the angle θ is measured in degrees. Use a right-angled triangle *ABC* to verify these results for the case when θ is acute.

Solution:

With
$$\angle B = \theta$$
, $\angle A = (90^{\circ} - \theta)$

$$\sin \theta = \frac{b}{c}, \cos \left(90^{\circ} - \theta\right) = \frac{b}{c}$$

So cos
$$(90^{\circ} - \theta) = \sin \theta$$

$$\cos \theta = \frac{a}{c}, \sin \left(90^{\circ} - \theta \right) = \frac{a}{c}$$

So sin
$$(90^{\circ} - \theta) = \cos \theta$$

$$\tan \theta = \frac{b}{a}, \tan \left(90^{\circ} - \theta \right) = \frac{a}{b} = \frac{1}{\left(\frac{b}{a}\right)} = \frac{1}{\tan \theta}$$

Graphics of trigonometric functions Exercise E, Question 1

Question:

Sketch the graph of $y = \cos \theta$ in the interval $-\pi \le \theta \le \pi$.

Solution:

Graphics of trigonometric functions Exercise E, Question 2

Question:

Sketch the graph of $y = \tan \theta^{\circ}$ in the interval $-180 \le \theta \le 180$.

Solution:

Graphics of trigonometric functions Exercise E, Question 3

Question:

Sketch the graph of $y = \sin \theta$ ° in the interval $-90 \le \theta \le 270$.

Solution:

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise F, Question 1

Question:

Write down (i) the maximum value, and (ii) the minimum value, of the following expressions, and in each case give the smallest positive (or zero) value of x for which it occurs.

- (a) $\cos x^{\circ}$ (b) 4 $\sin x^{\circ}$ (c) $\cos (-x)^{\circ}$ (d) $3 + \sin x^{\circ}$
- (e) $-\sin x^{\circ}$ (f) $\sin 3x^{\circ}$

Solution:

- (a) (i) Maximum value of cos $x \circ = 1$, occurs when x = 0.
- (ii) Minimum value is -1, occurs when x = 180.
- (b) (i) Maximum value of sin $x^{\circ} = 1$, so maximum value of 4 sin $x^{\circ} = 4$, occurs when x = 90.
- (ii) Minimum value of 4 sin $x \circ$ is -4, occurs when x = 270.
- (c) The graph of $\cos (-x)^{\circ}$ is a reflection of the graph of $\cos x^{\circ}$ in the y-axis.

- This is the same curve; $\cos(-x)^\circ = \cos x^\circ$. (i) Maximum value of $\cos(-x)^\circ = 1$, occurs when x = 0.
- (ii) Minimum value of cos $(-x)^{\circ} = -1$, occurs when x = 180.
- (d) The graph of 3 + sin x° is the graph of sin x° translated by +3 vertically.
- (i) Maximum = 4, when x = 90.
- (ii) Minimum = 2, when x = 270.
- (e) The graph of $-\sin x^{\circ}$ is the reflection of the graph of $\sin x^{\circ}$ in the x-axis.
- (i) Maximum = 1, when x = 270.
- (ii) Minimum = -1, when x = 90.
- (f) The graph of sin $3x^{\circ}$ is the graph of sin x° stretched by $\frac{1}{3}$ in the x direction.
- (i) Maximum = 1, when x = 30.
- (ii) Minimum = -1, when x = 90.
- © Pearson Education Ltd 2008

Graphics of trigonometric functions Exercise F, Question 2

Question:

Sketch, on the same set of axes, in the interval $0 \le \theta \le 360^{\circ}$, the graphs of $\cos \theta$ and $\cos 3\theta$.

Solution:

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise F, Question 3

Question:

Sketch, on separate axes, the graphs of the following, in the interval $0 \le \theta \le 360^{\circ}$. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate.

(a)
$$y = -\cos \theta$$

(b)
$$y = \frac{1}{3} \sin \theta$$

(c)
$$y = \sin \frac{1}{3}\theta$$

(d)
$$y = \tan (\theta - 45^{\circ})$$

Solution:

(a) The graph of $y = -\cos \theta$ is the graph of $y = \cos \theta$ reflected in the θ -axis.

Meets θ -axis at (90°, 0), (270°, 0)

Meets y-axis at $(0^{\circ}, -1)$

Maximum at (180°, 1)

Minima at $(0^{\circ}, -1)$ and $(360^{\circ}, -1)$

(b) The graph of $y = \frac{1}{3} \sin \theta$ is the graph of $y = \sin \theta$ stretched by scale factor $\frac{1}{3}$ in y direction.

Meets θ -axis at $(0^{\circ}, 0)$, $(180^{\circ}, 0)$, $(360^{\circ}, 0)$

Meets y-axis at $(0^{\circ}, 0)$

Maximum at
$$\left(90^{\circ}, \frac{1}{3}\right)$$

Minimum at
$$\left(270^{\circ}, -\frac{1}{3}\right)$$

(c) The graph of $y = \sin \frac{1}{3}\theta$ is the graph of $y = \sin \theta$ stretched by scale factor 3 in θ direction.

Only meets axes at origin Maximum at (270°, 1)

(d) The graph of $y = \tan (\theta - 45^{\circ})$ is the graph of $\tan \theta$ translated by 45° to the right.

Meets θ -axis at (45°, 0), (225°, 0)

Meets y-axis at $(0^{\circ}, -1)$

(Asymptotes at $\theta = 135^{\circ}$ and $\theta = 315^{\circ}$)

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise F, Question 4

Question:

Sketch, on separate axes, the graphs of the following, in the interval $-180 \le \theta \le 180$. Give the coordinates of points of intersection with the axes, and of maximum and minimum points where appropriate.

(a)
$$y = -2 \sin \theta^{\circ}$$

(b)
$$y = \tan (\theta + 180)^{\circ}$$

(c)
$$y = \cos 4\theta^{\circ}$$

(d)
$$y = \sin (-\theta)^{\circ}$$

Solution:

(a) This is the graph of $y = \sin \theta$ ° stretched by scale factor -2 in the y direction (i.e. reflected in the θ -axis and scaled by 2 in the y direction).

Meets θ -axis at $(-180^{\circ}, 0), (0^{\circ}, 0), (180^{\circ}, 0)$

Maximum at $(-90^{\circ}, 2)$

Minimum at $(90^{\circ}, -2)$

(b) This is the graph of $y = \tan \theta^{\circ}$ translated by 180° to the left.

As $\tan \theta$ ° has a period of 180° $\tan (\theta + 180)$ ° = $\tan \theta$ ° Meets θ -axis at $(-180^\circ, 0)$, $(0^\circ, 0)$, $(180^\circ, 0)$

(c) This is the graph of $y = \cos \theta^{\circ}$ stretched by scale factor $\frac{1}{4}$ horizontally.

Meets θ-axis at
$$\left(-157\frac{1}{2} °, 0 \right)$$
, $\left(-112\frac{1}{2} °, 0 \right)$, $\left(-67\frac{1}{2} °, 0 \right)$, $\left(-22\frac{1}{2} °, 0 \right)$, $\left(22\frac{1}{2} °, 0 \right)$, $\left(67\frac{1}{2} °, 0 \right)$, $\left(112\frac{1}{2} °, 0 \right)$, $\left(157\frac{1}{2} °, 0 \right)$

Meets y-axis at $(0^{\circ}, 1)$

Maxima at $(-180^{\circ}, 1)$, $(-90^{\circ}, 1)$, $(0^{\circ}, 1)$, $(90^{\circ}, 1)$, $(180^{\circ}, 1)$ Minima at $(-135^{\circ}, -1)$, $(-45^{\circ}, -1)$, $(45^{\circ}, -1)$, $(135^{\circ}, -1)$

(d) This is the graph of $y = \sin \theta^{\circ}$ reflected in the y-axis. (This is the same as $y = -\sin \theta^{\circ}$.)

Meets θ -axis at (-180° , 0), (0°, 0), (180°, 0) Maximum at (-90° , 1) Minimum at (90°, -1)

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise F, Question 5

Question:

In this question θ is measured in radians. Sketch, on separate axes, the graphs of the following in the interval $-2\pi \le \theta \le 2\pi$. In each case give the periodicity of the function.

(a)
$$y = \sin \frac{1}{2}\theta$$

(b)
$$y = -\frac{1}{2}\cos\theta$$

(c)
$$y = \tan \left(\theta - \frac{\pi}{2}\right)$$

(d)
$$y = \tan 2\theta$$

Solution:

(a) This is the graph of $y = \sin \theta$ stretched by scale factor 2 horizontally. Period $= 4\pi$

(b) This is the graph of $y = \cos \theta$ stretched by scale factor $-\frac{1}{2}$ vertically.

(Equivalent to reflection, in θ -axis and stretching vertically by $+\frac{1}{2}$.)

Period = 2π

(c) This is the graph of $y = \tan \theta$ translated by $\frac{\pi}{2}$ to the right.

 $Period = \pi$

(d) This is the graph of $y = \tan \theta$ stretched by scale factor $\frac{1}{2}$ horizontally.

Period = $\frac{\pi}{2}$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise F, Question 6

Question:

(a) By considering the graphs of the functions, or otherwise, verify that:

(i)
$$\cos \theta = \cos (-\theta)$$

(ii)
$$\sin \theta = -\sin (-\theta)$$

(iii)
$$\sin (\theta - 90^{\circ}) = -\cos \theta$$

(b) Use the results in (a) (ii) and (iii) to show that sin $(90^{\circ} - \theta) = \cos \theta$.

(c) In Example 11 you saw that cos $(\theta - 90^{\circ}) = \sin \theta$. Use this result with part (a) (i) to show that cos $(90^{\circ} - \theta) = \sin \theta$.

Solution:

(a) (i) $y = \cos(-\theta)$ is a reflection of $y = \cos\theta$ in the y-axis, which is the same curve, so $\cos\theta = \cos(-\theta)$.

(ii) $y = \sin (-\theta)$ is a reflection of $y = \sin \theta$ in the y-axis

 $y = -\sin (-\theta)$ is a reflection of $y = \sin (-\theta)$ in the θ -axis, which is the graph of $y = \sin \theta$, so $-\sin (-\theta) = \sin \theta$.

(iii) $y = \sin (\theta - 90^{\circ})$ is the graph of $y = \sin \theta$ translated by 90° to the right, which is the graph of $y = -\cos \theta$, so $\sin (\theta - 90^{\circ}) = -\cos \theta$.

(b) Using (a) (ii), sin $(90^{\circ} - \theta) = -\sin [-(90^{\circ} - \theta)] = -\sin (\theta - 90^{\circ})$ Using (a) (iii), $-\sin (\theta - 90^{\circ}) = -(-\cos \theta) = \cos \theta$ So $\sin (90^{\circ} - \theta) = \cos \theta$.

(c) Using (a)(i), cos (90 $^{\circ}$ - θ) = cos (θ - 90 $^{\circ}$) = sin θ , using Example 11.

Graphics of trigonometric functions Exercise G, Question 1

Question:

Write each of the following as a trigonometric ratio of an acute angle:

(a) cos 237 $^{\circ}$

(b) $\sin 312^{\circ}$

(c) tan 190 $^{\circ}$

(d) sin 2.3^c

(e) cos
$$\left(-\frac{\pi}{15}\right)$$

Solution:

(a) 237° is in the third quadrant so cos 237° is – ve. The angle made with the horizontal is 57°. So cos 237° = – cos 57°

(b) 312° is in the fourth quadrant so sin 312 ° is - ve. The angle to the horizontal is 48°.

So $\sin 312 \circ = -\sin 48 \circ$

(c) 190° is in the third quadrant so tan 190° is +ve. The angle to the horizontal is 10°. So tan 190° = + tan 10°

(d) 2.3 radians (131.78 ... °) is in the second quadrant so sin 2.3^c is +ve. The angle to the horizontal is (π – 2.3) radians = 0.84 radians (2 s.f.). So sin 2.3^c = + sin 0.84^c

(e)
$$-\left(\frac{\pi}{15}\right)$$
 is in the fourth quadrant so $\cos\left(-\frac{\pi}{15}\right)$ is +ve.

The angle to the horizontal is $\frac{\pi}{15}$.

So
$$\cos \left(-\frac{\pi}{15}\right) = +\cos \left(\frac{\pi}{15}\right)$$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 2

Question:

Without using your calculator, work out the values of:

- (a) cos 270 $^{\circ}$
- (b) sin 225 $^{\circ}$
- (c) cos 180°
- (d) tan 240 $^{\circ}$
- (e) tan 135 $^{\circ}$
- (f) cos 690 °
- (g) $\sin \frac{5\pi}{3}$
- (h) cos $\left(-\frac{2\pi}{3}\right)$
- (i) tan 2π
- (j) $\sin \left(-\frac{7\pi}{6}\right)$

Solution:

- (a) $\sin 270^{\circ} = -1$ (see graph of $y = \sin \theta$)
- (b) $\sin 225^{\circ} = \sin \left(180 + 45^{\circ} \right)^{\circ} = -\sin 45^{\circ} = -\frac{\sqrt{2}}{2}$
- (c) cos 180 ° = -1 (see graph of $y = \cos \theta$)
- (d) tan 240 $^{\circ}=$ tan (180+60) $^{\circ}=+$ tan 60 $^{\circ}$ (third quadrant) So tan 240 $^{\circ}=+\sqrt{3}$
- (e) tan $135^{\circ} = -\tan 45^{\circ}$ (second quadrant) So tan $135^{\circ} = -1$
- (f) cos 690 ° = cos (360 + 330) ° = cos 330 ° = + cos 30 ° (fourth quadrant) So cos 690 ° = + $\frac{\sqrt{3}}{2}$

(g)
$$\sin \frac{5\pi}{3} = -\sin \frac{\pi}{3}$$
 (fourth quadrant)

So sin
$$\frac{5\pi}{3} = -\frac{\sqrt{3}}{2}$$

(h)
$$\cos \left(-\frac{2\pi}{3}\right) = -\cos \frac{\pi}{3}$$
 (third quadrant)

So cos
$$\left(-\frac{2\pi}{3}\right) = -\frac{1}{2}$$

(i)
$$\tan 2\pi = 0$$
 (see graph of $y = \tan \theta$)

(j)
$$\sin \left(-\frac{7\pi}{6}\right) = +\sin \left(\frac{\pi}{6}\right)$$
 (second quadrant)

So
$$\sin \left(-\frac{7\pi}{6}\right) = +\frac{1}{2}$$

Graphics of trigonometric functions Exercise G, Question 3

Question:

Describe geometrically the transformations which map:

(a) The graph of $y = \tan x^{\circ}$ onto the graph of $\tan \frac{1}{2}x^{\circ}$.

(b) The graph of $y = \tan \frac{1}{2}x^{\circ}$ onto the graph of $3 + \tan \frac{1}{2}x^{\circ}$.

(c) The graph of $y = \cos x^{\circ}$ onto the graph of $-\cos x^{\circ}$.

(d) The graph of $y = \sin (x - 10)^\circ$ onto the graph of $\sin (x + 10)^\circ$.

Solution:

(a) A stretch of scale factor 2 in the x direction.

(b) A translation of + 3 in the y direction.

(c) A reflection in the x-axis

(d) A translation of +20 in the negative x direction (i.e. 20 to the left).

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 4

Question:

(a) Sketch on the same set of axes, in the interval $0 \le x \le \pi$, the graphs of $y = \tan \left(x - \frac{1}{4}\pi\right)$ and $y = -2 \cos x$, showing the coordinates of points of intersection with the axes.

(b) Deduce the number of solutions of the equation $\left(x - \frac{1}{4}\pi\right) + 2 \cos x = 0$, in the interval $0 \le x \le \pi$.

Solution:

4 (a) $y = \tan(x - \frac{\pi}{4})$ $y = -2 \cos x$ $y = -2 \cos x$ -1 -2

(b) There are no solutions of $\tan \left(x - \frac{\pi}{4}\right) + 2 \cos x = 0$ in the interval $0 \le x \le \pi$, since $y = \tan \left(x - \frac{\pi}{4}\right)$ and $y = -2 \cos x$ do not intersect in the interval.

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 5

Question:

The diagram shows part of the graph of y = f(x). It crosses the x-axis at A(120, 0) and B(p, 0). It crosses the y-axis at C(0, q) and has a maximum value at D, as shown.

Given that f (x) = $\sin (x + k)^\circ$, where k > 0, write down:

- (a) the value of p
- (b) the coordinates of D
- (c) the smallest value of k
- (d) the value of q

Solution:

(a) As it is the graph of $y = \sin x^{\circ}$ translated, the gap between A and B is 180, so p = 300.

(b) The difference in the x-coordinates of D and A is 90, so the x-coordinate of D is 30. The maximum value of y is 1, so D = (30, 1).

(c) For the graph of $y = \sin x^{\circ}$, the first positive intersection with the x-axis would occur at 180. The point A is at 120 and so the curve has been translated by 60 to the left. k = 60

(d) The equation of the curve is $y = \sin (x + 60)^{\circ}$.

When
$$x = 0$$
, $y = \sin 60^{\circ} = \frac{\sqrt{3}}{2}$, so $q = \frac{\sqrt{3}}{2}$.

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 6

Question:

Consider the function f (x) = $\sin px$, $p \in \mathbb{R}$, $0 \le x \le 2\pi$.

The closest point to the origin that the graph of f(x) crosses the *x*-axis has *x*-coordinate $\frac{\pi}{5}$.

- (a) Sketch the graph of f(x).
- (b) Write down the period of f(x).
- (c) Find the value of p.

Solution:

(a) The graph is that of $y = \sin x$ stretched in the x direction.

Each 'half-wave' has interval $\frac{\pi}{5}$.

- (b) The period is a 'wavelength', i.e. $\frac{2\pi}{5}$.
- (c) The stretch factor is $\frac{1}{p}$.

As 2π has been reduced to $\frac{2\pi}{5}$, 2π has been multiplied by $\frac{1}{5}$ which is $\frac{1}{p}$ \Rightarrow p = 5.

The curve is $y = \sin 5x$, there are 5 'waves' in 0 to 2π .

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 7

Question:

The graph below shows $y = \sin \theta$, $0 \le \theta \le 360^\circ$, with one value of θ ($\theta = \alpha^\circ$) marked on the axis.

- (a) Copy the graph and mark on the θ -axis the positions of $(180 \alpha)^{\circ}$, $(180 + \alpha)^{\circ}$, and $(360 \alpha)^{\circ}$.
- (b) Establish the result $\sin \alpha^{\circ} = \sin (180 \alpha)^{\circ} = -\sin (180 + \alpha)^{\circ} = -\sin (360 \alpha)^{\circ}$.

Solution:

(a) The four shaded regions are congruent.

(b)
$$\sin \alpha^{\circ}$$
 and $\sin (180 - \alpha)^{\circ}$ have the same y value (call it k). So $\sin \alpha^{\circ} = \sin (180 - \alpha)^{\circ}$ $\sin (180 + \alpha)^{\circ}$ and $\sin (360 - \alpha)^{\circ}$ have the same y value, which will be $-k$. So $\sin \alpha^{\circ} = \sin (180 - \alpha)^{\circ} = -\sin (180 + \alpha)^{\circ} = -\sin (360 - \alpha)^{\circ}$

Edexcel Modular Mathematics for AS and A-Level

Graphics of trigonometric functions Exercise G, Question 8

Question:

(a) Sketch on separate axes the graphs of $y=\cos\theta$ ($0 \le \theta \le 360^\circ$) and $y=\tan\theta$ ($0 \le \theta \le 360^\circ$), and on each θ -axis mark the point (α° , 0) as in question 7.

(b) Verify that:

(i)
$$\cos \alpha^{\circ} = -\cos (180 - \alpha)^{\circ} = -\cos (180 + \alpha)^{\circ} = \cos (360 - \alpha)^{\circ}$$
.

(ii)
$$\tan \alpha^{\circ} = -\tan (180 - \alpha)^{\circ} = -\tan (180 + \alpha)^{\circ} = -\tan (360 - \alpha)^{\circ}$$
.

Solution:

(b) (i) From the graph of $y = \cos \theta^{\circ}$, which shows four congruent shaded regions, if the y value at α° is k, then y at $(180 - \alpha)^{\circ}$ is -k, y at $(180 + \alpha)^{\circ}$ is -k and y at $(360 - \alpha)^{\circ}$ is +k. So $\cos \alpha^{\circ} = -\cos (180 - \alpha)^{\circ} = -\cos (180 + \alpha)^{\circ} = \cos (360 - \alpha)^{\circ}$

(ii) From the graph of $y=\tan\theta$ °, if the y value at α ° is k, then at $(180-\alpha)$ ° it is -k, at $(180+\alpha)$ ° it is +k and at $(360-\alpha)$ ° it is -k. So $\tan\alpha$ ° = $-\tan$ $(180-\alpha)$ ° = $+\tan$ $(180+\alpha)$ ° = $-\tan$ $(360-\alpha)$ °