### **Edexcel Modular Mathematics for AS and A-Level**

# **Exponentials and logarithms** Exercise A, Question 1

#### **Question:**

- (a) Draw an accurate graph of  $y = (1.7)^x$ , for  $-4 \le x \le 4$ .
- (b) Use your graph to solve the equation  $(1.7)^{x} = 4$ .

#### **Solution:**



- (a)
- (b) Where y = 4,  $x \approx 2.6$
- © Pearson Education Ltd 2008

# **Exponentials and logarithms** Exercise A, Question 2

#### **Question:**

- (a) Draw an accurate graph of  $y = (0.6)^{-x}$ , for  $-4 \le x \le 4$ .
- (b) Use your graph to solve the equation (0.6) x = 2.

#### **Solution:**



- (b) Where  $y = 2, x \simeq -1.4$
- © Pearson Education Ltd 2008

**Exponentials and logarithms Exercise A, Question 3** 

**Question:** 

Sketch the graph of  $y = 1^x$ .

**Solution:** 



**Exponentials and logarithms** Exercise B, Question 1

#### **Question:**

Rewrite as a logarithm:

(a) 
$$4^4 = 256$$

(b) 
$$3^{-2} = \frac{1}{9}$$

(c) 
$$10^6 = 1 \quad 000 \quad 000$$

(d) 
$$11^1 = 11$$

(e) 
$$(0.2)^3 = 0.008$$

#### **Solution:**

(a) 
$$\log_4 256 = 4$$

(b) 
$$\log_3 \left(\frac{1}{9}\right) = -2$$

(c) 
$$\log_{10} 1 \quad 000 \quad 000 = 6$$

(d) 
$$\log_{11} 11 = 1$$

(e) 
$$\log_{0.2} 0.008 = 3$$

<sup>©</sup> Pearson Education Ltd 2008

### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms Exercise B, Question 2** 

#### **Question:**

Rewrite using a power:

- (a)  $\log_2 16 = 4$
- (b)  $\log_5 25 = 2$
- (c)  $\log_9 3 = \frac{1}{2}$
- (d)  $\log_5 0.2 = -1$
- (e)  $\log_{10} 100 000 = 5$

#### **Solution:**

- (a)  $2^4 = 16$
- (b)  $5^2 = 25$
- (c)  $9^{\frac{1}{2}} = 3$
- (d)  $5^{-1} = 0.2$
- (e)  $10^5 = 100 \quad 000$
- © Pearson Education Ltd 2008

### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms** Exercise B, Question 3

#### **Question:**

Find the value of:

- (a)  $\log_2 8$
- (b)  $\log_5 25$
- (c)  $\log_{10} 10 000 000$
- (d)  $\log_{12} 12$
- (e)  $\log_3 729$
- (f)  $\log_{10} \sqrt{10}$
- (g)  $\log_4$  (0.25)
- (h)  $\log_{0.25}$  16
- (i)  $\log_a (a^{10})$
- (j)  $\log \left(\frac{2}{3}\right) \left(\frac{9}{4}\right)$

#### **Solution:**

- (a) If  $\log_2 8 = x$  then  $2^x = 8$ , so x = 3
- (b) If  $\log_5 25 = x$  then  $5^x = 25$ , so x = 2
- (c) If  $\log_{10} 10 \ 000 \ 000 = x$  then  $10^x = 10 \ 000 \ 000$ , so x = 7
- (d) If  $\log_{12} 12 = x$  then  $12^x = 12$ , so x = 1
- (e) If  $\log_3 729 = x$  then  $3^x = 729$ , so x = 6
- (f) If  $\log_{10} \sqrt{10} = x$  then  $10^x = \sqrt{10}$ , so  $x = \frac{1}{2}$

(Power  $\frac{1}{2}$  means 'square root'.)

(g) If  $\log_4$  (0.25) = x then  $4^x = 0.25 = \frac{1}{4}$ , so x = -1

(Negative power means 'reciprocal'.)

(h) 
$$\log_{0.25} 16 = x$$
  
 $\Rightarrow 0.25^x = 16$   
 $\Rightarrow \left(\frac{1}{4}\right)^x = 16, \text{ so } x = -2$   

$$\left[\left(\frac{1}{4}\right)^{-2} = \frac{1}{\left(\frac{1}{4}\right)^2} = \frac{1}{\left(\frac{1}{16}\right)} = 16\right]$$

(i) 
$$\log_a (a^{10}) = x$$
  
 $\Rightarrow a^x = a^{10}$ , so  $x = 10$ 

(j) 
$$\log \left(\frac{2}{3}\right) \left(\frac{9}{4}\right) = x$$

$$\Rightarrow \left(\frac{2}{3}\right)^{x} = \frac{9}{4}, \text{ so } x = -2$$

$$\left[\left(\frac{2}{3}\right)^{-2} = \frac{1}{\left(\frac{2}{3}\right)^{2}} = \frac{1}{\left(\frac{4}{9}\right)} = \frac{9}{4}\right]$$

#### **Edexcel Modular Mathematics for AS and A-Level**

#### **Exponentials and logarithms** Exercise B, Question 4

#### **Question:**

Find the value of *x* for which:

- (a)  $\log_5 x = 4$
- (b)  $\log_{x} 81 = 2$
- (c)  $\log_7 x = 1$
- (d)  $\log_x (2x) = 2$

#### **Solution:**

(a) Using a power, 
$$5^4 = x$$
  
So  $x = 625$ 

(b) Using a power, 
$$x^2 = 81$$

So 
$$x = 9$$

(The base of a logarithm cannot be negative, so x = -9 is not possible.)

(c) Using a power, 
$$7^1 = x$$
  
So  $x = 7$ 

(d) Using a power,

$$x^2 = 2x$$
$$x^2 - 2x = 0$$

$$x - 2x = 0$$
$$x(x-2) = 0$$

$$x(x-2) = 0$$

(The base of a logarithm cannot be zero, so x = 0 is not possible.)

**Exponentials and logarithms Exercise C, Question 1** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:

 $\log_{10}~20$ 

#### **Solution:**

$$\log_{10} 20 = 1.3010$$
 ... = 1.30 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 2** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}~4$ 

#### **Solution:**

$$\log_{10} 4 = 0.6020$$
 ... = 0.602 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 3** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}~7000$ 

#### **Solution:**

$$\log_{10} 7000 = 3.8450$$
 ... = 3.85 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 4** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}\ 0.786$ 

#### **Solution:**

$$\log_{10} 0.786 = -0.1045$$
 ... =  $-0.105 (3 \text{ s.f.})$ 

**Exponentials and logarithms Exercise C, Question 5** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}~11$ 

#### **Solution:**

$$\log_{10} 11 = 1.0413$$
 ... = 1.04 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 6** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}~35.3$ 

#### **Solution:**

$$\log_{10} 35.3 = 1.5477$$
 ... = 1.55 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 7** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}\ 0.3$ 

#### **Solution:**

$$\log_{10} 0.3 = -0.5228$$
 ... = -0.523 (3 s.f.)

**Exponentials and logarithms Exercise C, Question 8** 

#### **Question:**

Find from your calculator the value to 3 s.f. of:  $\log_{10}~999$ 

#### **Solution:**

$$\log_{10} 999 = 2.9995$$
 ... = 3.00 (3 s.f.)

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise D, Question 1

#### **Question:**

Write as a single logarithm:

(a) 
$$\log_2 7 + \log_2 3$$

(b) 
$$\log_2 36 - \log_2 4$$

(c) 
$$3 \log_5 2 + \log_5 10$$

(d) 
$$2 \log_6 8 - 4 \log_6 3$$

(e) 
$$\log_{10} 5 + \log_{10} 6 - \log_{10} \left( \frac{1}{4} \right)$$

#### **Solution:**

(a) 
$$\log_2 (7 \times 3) = \log_2 21$$

(b) 
$$\log_2 \left( \frac{36}{4} \right) = \log_2 9$$

(c) 
$$3 \log_5 2 = \log_5 2^3 = \log_5 8$$
  
 $\log_5 8 + \log_5 10 = \log_5 (8 \times 10) = \log_5 80$ 

(d) 
$$2 \log_6 8 = \log_6 8^2 = \log_6 64$$

$$4 \log_6 3 = \log_6 3^4 = \log_6 81$$

$$\log_6 64 - \log_6 81 = \log_6 \left( \frac{64}{81} \right)$$

(e) 
$$\log_{10} 5 + \log_{10} 6 = \log_{10} (5 \times 6) = \log_{10} 30$$

$$\log_{10} 30 - \log_{10} \left( \begin{array}{c} \\ \frac{1}{4} \\ \end{array} \right) = \log_{10} \left[ \begin{array}{c} \\ \frac{30}{\left(\frac{1}{4}\right)} \\ \end{array} \right] = \log_{10} 120$$

#### **Edexcel Modular Mathematics for AS and A-Level**

#### **Exponentials and logarithms** Exercise D, Question 2

#### **Question:**

Write as a single logarithm, then simplify your answer:

(a) 
$$\log_2 40 - \log_2 5$$

(b) 
$$\log_6 4 + \log_6 9$$

(c) 
$$2 \log_{12} 3 + 4 \log_{12} 2$$

(d) 
$$\log_8 25 + \log_8 10 - 3 \log_8 5$$

(e) 
$$2 \log_{10} 20 - (\log_{10} 5 + \log_{10} 8)$$

#### **Solution:**

(a) 
$$\log_2 \left(\frac{40}{5}\right) = \log_2 8 = 3 \left(2^3 = 8\right)$$

(b) 
$$\log_6 (4 \times 9) = \log_6 36 = 2$$
 (6<sup>2</sup> = 36)

(c) 
$$\log_{12}$$
 (3<sup>2</sup>) +  $\log_{12}$  (2<sup>4</sup>)  
=  $\log_{12}$  9 +  $\log_{12}$  16  
=  $\log_{12}$  (9 × 16)

$$=\log_{12}^{12}$$
 144

$$= 2$$
 (  $12^2 = 144$  )

(d) 
$$\log_8$$
 (25 × 10) -  $\log_8$  (5<sup>3</sup>)  
=  $\log_8$  250 -  $\log_8$  125

$$=\log_8$$
  $\left(\begin{array}{c} \frac{250}{125} \end{array}\right)$ 

$$=\log_8 2$$

$$= \frac{1}{3} \quad \left( 8^{\frac{1}{3}} = 2 \right)$$

(e) 
$$\log_{10}$$
 (  $20^2$  )  $-\log_{10}$  (  $5 \times 8$  )

$$= \log_{10} 400 - \log_{10} 40$$

$$= \log_{10} \quad \left( \begin{array}{c} \frac{400}{40} \end{array} \right)$$

$$= \log_{10} 10$$

$$= 1 (10^1 = 10)$$

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms Exercise D, Question 3**

#### **Question:**

Write in terms of  $\log_a x$ ,  $\log_a y$  and  $\log_a z$ :

(a) 
$$\log_a (x^3 y^4 z)$$

(b) 
$$\log_a \left( \frac{x^5}{y^2} \right)$$

(c) 
$$\log_a (a^2x^2)$$

(d) 
$$\log_a \left( \frac{x \sqrt{y}}{z} \right)$$

(e) 
$$\log_a \sqrt{ax}$$

#### **Solution:**

(a) 
$$\log_a x^3 + \log_a y^4 + \log_a z$$
  
= 3  $\log_a x + 4 \log_a y + \log_a z$ 

(b) 
$$\log_a x^5 - \log_a y^2$$
  
=  $5 \log_a x - 2 \log_a y$ 

(c) 
$$\log_a a^2 + \log_a x^2$$
  
=  $2 \log_a a + 2 \log_a x$   
=  $2 + 2 \log_a x$  ( $\log_a a = 1$ )

(d) 
$$\log_a x + \log_a y^{\frac{1}{2}} - \log_a z$$
  
=  $\log_a x + \frac{1}{2} \log_a y - \log_a z$ 

(e) 
$$\log_a (ax)^{\frac{1}{2}}$$
  
=  $\frac{1}{2}\log_a (ax)$   
=  $\frac{1}{2}\log_a a + \frac{1}{2}\log_a x$   
=  $\frac{1}{2} + \frac{1}{2}\log_a x$ 

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise E, Question 1

#### **Question:**

Solve, giving your answer to 3 significant figures:

- (a)  $2^x = 75$
- (b)  $3^x = 10$
- (c)  $5^x = 2$
- (d)  $4^{2x} = 100$
- (e)  $9^{x+5} = 50$
- (f)  $7^{2x-1} = 23$
- (g)  $3^{x-1} = 8^{x+1}$
- (h)  $2^{2x+3} = 3^{3x+2}$
- (i)  $8^{3-x} = 10^x$
- (j)  $3^{4-3x} = 4^{x+5}$

#### **Solution:**

- (a)  $2^x = 75$
- $\log 2^x = \log 75$
- $x \log 2 = \log 75$
- $x = \frac{\log 75}{\log 2}$
- x = 6.23 (3 s.f.)
- (b)  $3^x = 10$
- $\log 3^x = \log 10$
- $x \log 3 = \log 10$
- $x = \frac{\log 3}{\log 3}$
- x = 2.10 (3 s.f.)
- (c)  $5^x = 2$
- $\log 5^x = \log 2$
- $x \log 5 = \log 2$
- $x = \frac{\log 2}{\log 5}$
- x = 0.431 (3 s.f.)
- (d)  $4^{2x} = 100$
- $\log 4^{2x} = \log 100$
- $2x \log 4 = \log 100$

$$x = \frac{\log 100}{2 \log 4}$$

$$x = 1.66 (3 \text{ s.f.})$$
(e)  $9^{x+5} = 50$ 
 $\log 9^{x+5} = \log 50$ 
( $x + 5$ )  $\log 9 = \log 50$ 
 $x \log 9 + 5 \log 9 = \log 50$ 
 $x \log 9 + 5 \log 9 = \log 50$ 
 $x \log 9 = \log 50 - 5 \log 9$ 

$$x = \frac{\log 50 - 5 \log 9}{\log 9}$$

$$x = -3.22 (3 \text{ s.f.})$$
(f)  $7^{2x-1} = 23$ 
 $\log 7^{2x-1} = \log 23$ 
 $(2x-1) \log 7 = \log 23$ 
 $2x \log 7 - \log 7 = \log 23$ 
 $2x \log 7 - \log 7 = \log 23$ 
 $2x \log 7 - \log 3 + \log 7$ 

$$x = \frac{\log 23 + \log 7}{2 \log 7}$$

$$x = 1.31 (3 \text{ s.f.})$$
(g)  $3^{x-1} = 8^{x+1}$ 
 $\log 3^{x-1} = \log 8^{x+1}$ 
( $(x-1) \log 3 = (x+1) \log 8$ 
 $x \log 3 - \log 3 = x \log 8 + \log 8$ 
 $x (\log 3 - \log 8) = \log 3 + \log 8$ 

$$x = \frac{\log 3 + \log 8}{\log 3 - \log 8}$$

$$x = -3.24 (3 \text{ s.f.})$$
(h)  $2^{2x+3} = 3^{3x+2}$ 
 $\log 2^{2x+3} = \log 3^{3x+2}$ 
( $2x + 3$ )  $\log 2 = (3x + 2) \log 3$ 
 $2x \log 2 - 3x \log 3 = 2 \log 3 - 3 \log 2$ 
 $x (2 \log 2 - 3 \log 3) = 2 \log 3 - 3 \log 2$ 
 $x (2 \log 2 - 3 \log 3)$ 

$$x = -0.0617 (3 \text{ s.f.})$$
(i)  $8^{3-x} = \log 10^x$ 
 $(3-x) \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 8 = x \log 10$ 
 $3 \log 8 = x \log 4 + 5 \log 4$ 
 $4 \log 3 - 3 \log 3 = x \log 4 + 5 \log 4$ 
 $4 \log 3 - 5 \log 4 = x \log 4 + 5 \log 4$ 
 $4 \log 3 - 5 \log 4 = x \log 4 + 5 \log 4$ 
 $4 \log 3 - 5 \log 4 = x \log 4 + 5 \log 4$ 
 $4 \log 3 - 5 \log 4 = x \log 4 + 3 \log 3$ 
 $x = -0.542 (3 \text{ s.f.})$ 

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise E, Question 2

#### **Question:**

Solve, giving your answer to 3 significant figures:

(a) 
$$2^{2x} - 6(2^x) + 5 = 0$$

(b) 
$$3^{2x} - 15(3^x) + 44 = 0$$

(c) 
$$5^{2x} - 6 (5^x) - 7 = 0$$

(d) 
$$3^{2x} + 3^{x+1} - 10 = 0$$

(e) 
$$7^{2x} + 12 = 7^{x+1}$$

(f) 
$$2^{2x} + 3(2^x) - 4 = 0$$

(g) 
$$3^{2x+1} - 26 (3^x) - 9 = 0$$

(h) 4 ( 
$$3^{2x+1}$$
 ) + 17 (  $3^x$  ) - 7 = 0

#### **Solution:**

(a) Let  $y = 2^x$ 

$$y^{2} - 6y + 5 = 0$$
  
 $(y - 1) (y - 5) = 0$   
So  $y = 1$  or  $y = 5$   
If  $y = 1, 2^{x} = 1, x = 0$   
If  $y = 5, 2^{x} = 5$   
 $\log 2^{x} = \log 5$   
 $x \log 2 = \log 5$ 

$$x = \frac{\log 5}{\log 2}$$
$$x = 2.32 \text{ (3 s.f.)}$$

So 
$$x = 0$$
 or  $x = 2.32$ 

(b) Let 
$$y = 3^x$$
  
 $y^2 - 15y + 44 = 0$ 

$$(y-4)(y-11) = 0$$
  
So  $y = 4$  or  $y = 11$ 

If 
$$y = 4$$
,  $3^x = 4$ 

$$\log 3^x = \log 4$$

$$x \log 3 = \log 4$$

$$x = \frac{\log 4}{\log 3}$$

$$x = 1.26 (3 \text{ s.f.})$$

If 
$$y = 11$$
,  $3^x = 11$ 

$$\log 3^x = \log 11$$

$$x \log 3 = \log 11$$

$$x = \frac{\log 11}{\log 3}$$

$$x = 2.18$$
 (3 s.f.)

So 
$$x = 1.26$$
 or  $x = 2.18$ 

x = 1.21 (3 s.f.)

x = 0.631 (3 s.f.)

(c) Let 
$$y = 5^x$$
  
 $y^2 - 6y - 7 = 0$   
 $(y + 1) (y - 7) = 0$   
So  $y = -1$  or  $y = 7$   
If  $y = -1$ ,  $5^x = -1$ . No solution.  
If  $y = 7$ ,  $5^x = 7$   
 $\log 5^x = \log 7$   
 $x \log 5 = \log 7$   
 $x = \frac{\log 7}{\log 5}$ 

(d) Let 
$$y = 3^x$$
  
 $(3^x)^2 + (3^x \times 3) - 10 = 0$   
 $y^2 + 3y - 10 = 0$   
 $(y + 5) (y - 2) = 0$   
So  $y = -5$  or  $y = 2$   
If  $y = -5$ ,  $3^x = -5$ . No solution.  
If  $y = 2$ ,  $3^x = 2$   
 $\log 3^x = \log 2$   
 $x = \frac{\log 2}{\log 3}$ 

(e) Let 
$$y = 7^x$$
  
 $(7^x)^2 + 12 = 7^x \times 7$   
 $y^2 + 12 = 7y$   
 $y^2 - 7y + 12 = 0$   
 $(y - 3)(y - 4) = 0$   
So  $y = 3$  or  $y = 4$   
If  $y = 3$ ,  $7^x = 3$   
 $x \log 7 = \log 3$   
 $x = \frac{\log 3}{\log 7}$   
 $x = 0.565 (3 \text{ s.f.})$   
If  $y = 4$ ,  $7^x = 4$   
 $x \log 7 = \log 4$   
 $x = \frac{\log 4}{\log 7}$   
 $x = 0.712 (3 \text{ s.f.})$   
So  $x = 0.565 \text{ or } x = 0.712$ 

(f) 
$$2^{2x} + 3$$
 (  $2^{x}$  )  $-4 = 0$   
Let  $y = 2^{x}$   
Then  $y^{2} + 3y - 4 = 0$   
So (  $y + 4$  ) (  $y - 1$  ) = 0  
So  $y = -4$  or  $y = 1$   
 $2^{x} = -4$  has no solution  
Therefore  $2^{x} = 1$   
So  $x = 0$  is the only solution

(g) 
$$3^{2x+1} - 26 (3^x) - 9 = 0$$
  
Let  $y = 3^x$ 

Then 
$$3y^2 - 26y - 9 = 0$$
  
So  $(3y + 1) (y - 9) = 0$ 

So 
$$y = -\frac{1}{3}$$
 or  $y = 9$ 

$$3^x = -\frac{1}{3}$$
 has no solution

Therefore  $3^x = 9$ 

So x = 2 is the only solution

(h) 4 ( 
$$3^{2x+1}$$
 ) + 17 (  $3^x$  ) - 7 = 0  
12 (  $3^{2x}$  ) + 17 (  $3^x$  ) - 7 = 0  
Let  $y = 3^x$   
So  $12y^2 + 17y - 7 = 0$   
So  $(3y - 1)(4y + 7) = 0$   
So  $y = \frac{1}{3}$  or  $y = -\frac{7}{4}$ 

$$3^x = -\frac{7}{4}$$
 has no solution

Therefore 
$$3^x = \frac{1}{3}$$

So x = -1 is the only solution

**Exponentials and logarithms** Exercise F, Question 1

#### **Question:**

Find, to 3 decimal places:

- (a)  $\log_7 120$
- (b)  $\log_3 45$
- (c)  $\log_2 19$
- (d)  $\log_{11}$  3
- (e) log<sub>6</sub> 4

#### **Solution:**

(a) 
$$\log_7 120 = \frac{\log_{10} 120}{\log_{10} 7} = 2.460 \text{ (3 d.p.)}$$

(b) 
$$\log_3 45 = \frac{\log_{10} 45}{\log_{10} 3} = 3.465 (3 \text{ d.p.})$$

(c) 
$$\log_2 19 = \frac{\log_{10} 19}{\log_{10} 2} = 4.248 \text{ (3 d.p.)}$$

(d) 
$$\log_{11} 3 = \frac{\log_{10} 3}{\log_{10} 11} = 0.458 (3 \text{ d.p.})$$

(e) 
$$\log_6 4 = \frac{\log_{10} 4}{\log_{10} 6} = 0.774 (3 \text{ d.p.})$$

## **Exponentials and logarithms** Exercise F, Question 2

#### **Question:**

Solve, giving your answer to 3 significant figures:

(a) 
$$8^x = 14$$

(b) 
$$9^x = 99$$

(c) 
$$12^x = 6$$

#### **Solution:**

(a) 
$$\log 8^x = \log 14$$
  
 $x \log 8 = \log 14$   
 $x = \frac{\log_{10} 14}{\log_{10} 8}$ 

$$x = 1.27$$
 (3 s.f.)

(b) 
$$\log 9^x = \log 99$$
  
 $x \log 9 = \log 99$   
 $x = \frac{\log_{10} 99}{\log_{10} 9}$ 

$$x = 2.09$$
 (3 s.f.)

(c) 
$$\log 12^x = \log 6$$
  
 $x \log 12 = \log 6$   
 $x = \frac{\log_{10} 6}{\log_{10} 12}$   
 $x = 0.721 (3 \text{ s.f.})$ 

<sup>©</sup> Pearson Education Ltd 2008

#### **Edexcel Modular Mathematics for AS and A-Level**

#### **Exponentials and logarithms** Exercise F, Question 3

#### **Question:**

Solve, giving your answer to 3 significant figures:

(a) 
$$\log_2 x = 8 + 9 \log_x 2$$

(b) 
$$\log_4 x + 2 \log_x 4 + 3 = 0$$

$$(c) \log_2 x + \log_4 x = 2$$

#### **Solution:**

(a) 
$$\log_2 x = 8 + 9 \log_x 2$$

$$\log_2 x = 8 + \frac{9}{\log_2 x}$$

Let 
$$\log_2 x = y$$

$$y = 8 + \frac{9}{y}$$

$$y^2 = 8y + 9$$

$$y^2 - 8y - 9 = 0$$

$$(y+1) (y-9) = 0$$
  
So  $y = -1$  or  $y = 9$   
If  $y = -1$ ,  $\log_2 x = -1$ 

So 
$$y = -1$$
 or  $y = 9$ 

$$II y = -1, \log_2 x = -$$

$$\Rightarrow \quad x = 2^{-1} = \frac{1}{2}$$

If 
$$y = 9$$
,  $\log_2 x = 9$ 

$$\Rightarrow x = 2^9 = 512$$

So 
$$x = \frac{1}{2}$$
 or  $x = 512$ 

(b) 
$$\log_4 x + 2 \log_x 4 + 3 = 0$$

$$\log_4 x + \frac{2}{\log_4 x} + 3 = 0$$

Let 
$$\log_4 x = y$$

$$y + \frac{2}{y} + 3 = 0$$

$$y^2 + 2 + 3y = 0$$

$$y^2 + 3y + 2 = 0$$

$$(y+1)(y+2)=0$$

So 
$$y = -1$$
 or  $y = -2$   
If  $y = -1$ ,  $\log_4 x = -1$ 

$$\Rightarrow \quad x = 4^{-1} = \frac{1}{4}$$

If 
$$y = -2$$
,  $\log_4 x = -2$ 

$$\Rightarrow x = 4^{-2} = \frac{1}{16}$$

So 
$$x = \frac{1}{4}$$
 or  $x = \frac{1}{16}$ 

$$(c) \log_2 x + \log_4 x = 2$$

$$\log_2 x + \frac{\log_2 x}{\log_2 4} = 2$$

But 
$$\log_2 4 = 2$$
 (because  $2^2 = 4$ ), so

$$\log_2 x + \frac{\log_2 x}{2} = 2$$

$$\frac{3}{2}\log_2 x = 2$$

$$\log_2 x = \frac{4}{3}$$

$$x=2^{\frac{4}{3}}$$

$$x = 2.52$$
 (3 s.f.)

#### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms** Exercise G, Question 1

#### **Question:**

Find the possible values of x for which  $2^{2x+1} = 3(2^x) - 1$ . **[E]** 

#### **Solution:**

$$2^{2x+1} = 3 (2^{x}) - 1$$

$$2^{2x} \times 2^{1} = 3 (2^{x}) - 1$$
Let  $2^{x} = y$ 

$$2y^{2} = 3y - 1$$

$$2y^{2} - 3y + 1 = 0$$

$$(2y - 1) (y - 1) = 0$$
So  $y = \frac{1}{2}$  or  $y = 1$ 
If  $y = \frac{1}{2}$ ,  $2^{x} = \frac{1}{2}$ ,  $x = -1$ 
If  $y = 1$ ,  $2^{x} = 1$ ,  $x = 0$ 
So  $x = 0$  or  $x = -1$ 

### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms Exercise G, Question 2** 

#### **Question:**

- (a) Express  $\log_a$  ( $p^2q$ ) in terms of  $\log_a p$  and  $\log_a q$ .
- (b) Given that  $\log_a$  (pq) = 5 and  $\log_a$  (p<sup>2</sup>q) = 9, find the values of  $\log_a$  p and  $\log_a$  q. **[E]**

#### **Solution:**

(a) 
$$\log_a (p^2q) = \log_a (p^2) + \log_a q = 2 \log_a p + \log_a q$$

(b) 
$$\log_a$$
 (pq) =  $\log_a p + \log_a q$ 

So

$$\log_a p + \log_a q = 5 \quad \bigcirc$$

$$2 \log_a p + \log_a q = 9 \quad \textcircled{2}$$

Subtracting equation ① from equation ②:

$$\log_a p = 4$$

So 
$$\log_a q = 1$$

#### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms Exercise G, Question 3** 

#### **Question:**

Given that  $p = \log_q 16$ , express in terms of p,

(a) 
$$\log_q 2$$
,

(b) 
$$\log_q$$
 (8q). **[E]**

#### **Solution:**

(a) 
$$p = \log_q 16$$
  
 $p = \log_q (2^4)$   
 $p = 4 \log_q 2$   
 $\log_q 2 = \frac{p}{4}$ 

(b) 
$$\log_q (8q) = \log_q 8 + \log_q q$$
  
=  $\log_q (2^3) + \log_q q$   
=  $3 \log_q 2 + \log_q q$   
=  $\frac{3p}{4} + 1$ 

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise G, Question 4

#### **Question:**

- (a) Given that  $\log_3 x = 2$ , determine the value of x.
- (b) Calculate the value of y for which  $2 \log_3 y \log_3 (y+4) = 2$ .
- (c) Calculate the values of z for which  $\log_3 z = 4 \log_z 3$ .

#### [E]

#### **Solution:**

(a) 
$$\log_3 x = 2$$
$$x = 3^2 = 9$$

(b) 
$$2 \log_3 y - \log_3 (y + 4) = 2$$

$$\log_3 (y^2) - \log_3 (y+4) = 2$$

$$\log_3 \left( \frac{y^2}{y+4} \right) = 2$$

$$\frac{y^2}{y+4} = 9$$

$$y^2 = 9y + 36$$

$$y^2 - 9y - 36 = 0$$

$$(y+3)(y-12)=0$$

$$y = -3 \text{ or } y = 12$$

But  $\log_3$  ( -3) is not defined,

So 
$$y = 12$$

(c) 
$$\log_3 z = 4 \log_z 3$$

$$\log_3 z = \frac{4}{\log_3 z}$$

$$(\log_3 z)^2 = 4$$

Either  $\log_3 z = 2$  or  $\log_3 z = -2$ 

$$z = 3^2$$
 or  $z = 3^{-2}$ 

$$z = 9 \text{ or } z = \frac{1}{9}$$

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise G, Question 5

#### **Question:**

(a) Using the substitution  $u = 2^x$ , show that the equation  $4^x - 2^{(x+1)} - 15 = 0$  can be written in the form  $u^2 - 2u - 15 = 0$ .

(b) Hence solve the equation  $4^x - 2^{(x+1)} - 15 = 0$ , giving your answer to 2 decimal places. [E]

#### **Solution:**

(a) 
$$4^{x} - 2^{(x+1)} - 15 = 0$$
  
 $4^{x} = (2^{2})^{x} = (2^{x})^{2}$   
 $2^{x+1} = 2^{x} \times 2^{1}$   
Let  $u = 2^{x}$   
 $u^{2} - 2u - 15 = 0$   
(b)  $(u+3)(u-5) = 0$   
So  $u = -3$  or  $u = 5$   
If  $u = -3$ ,  $2^{x} = -3$ . No solution.  
If  $u = 5$ ,  $2^{x} = 5$   
 $\log 2^{x} = \log 5$   
 $x = \frac{\log 5}{\log 2}$   
 $x = 2.32$  (2 d.p.)

## **Exponentials and logarithms** Exercise G, Question 6

#### **Question:**

Solve, giving your answers as exact fractions, the simultaneous equations:

$$8^y = 4^{2x+3}$$
  
 $\log_2 y = \log_2 x + 4$ . **[E]**

#### **Solution:**

$$8^{y} = 4^{2x+3}$$

$$(2^{3})^{y} = (2^{2})^{2x+3}$$

$$2^{3y} = 2^{2(2x+3)}$$

$$3y = 4x+6 \quad \bigcirc$$

$$\log_2 y - \log_2 x = 4$$

$$\log_2 \left( \frac{y}{x} \right) = 4$$

$$\frac{y}{x} = 2^4 = 16$$

$$y = 16x$$
 ①

Substitute 2 into 1:

$$48x = 4x + 6$$

$$44x = 6$$

$$x = \frac{3}{22}$$

$$y = 16x = \frac{48}{22} = 2 \frac{2}{11}$$

So 
$$x = \frac{3}{22}$$
,  $y = 2 \frac{2}{11}$ 

**Exponentials and logarithms** Exercise G, Question 7

#### **Question:**

Find the values of x for which  $\log_3 x - 2 \log_x 3 = 1$ . **[E]** 

#### **Solution:**

$$\log_3 x - 2 \log_x 3 = 1$$

$$\log_3 x - \frac{2}{\log_3 x} = 1$$

Let 
$$\log_3 x = y$$

$$y - \frac{2}{y} = 1$$

$$v^2 - 2 - v$$

$$y^2 - 2 = y$$

$$y^{2}-2 = y$$
  
 $y^{2}-y-2 = 0$   
 $(y+1)(y-2) = 0$   
So  $y = -1$  or  $y = 2$   
If  $y = -1$ ,  $\log_{3} x = -1$ 

So 
$$y = -1$$
 or  $y = 2$ 

If 
$$y = -1$$
,  $\log_3 x = -$ 

$$\Rightarrow \quad x = 3^{-1} = \frac{1}{3}$$

If 
$$y = 2$$
,  $\log_3 x = 2$ 

$$\Rightarrow$$
  $x = 3^2 = 9$ 

So 
$$x = \frac{1}{3}$$
 or  $x = 9$ 

#### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms** Exercise G, Question 8

#### **Question:**

Solve the equation  $\log_3 (2-3x) = \log_9 (6x^2 - 19x + 2)$ . **[E]** 

#### **Solution:**

$$\log_{3} (2-3x) = \log_{9} (6x^{2} - 19x + 2)$$

$$\log_{9} \left(6x^{2} - 19x + 2\right) = \frac{\log_{3} (6x^{2} - 19x + 2)}{\log_{3} 9} = \frac{\log_{3} (6x^{2} - 19x + 2)}{2}$$
So
$$2 \log_{3} (2-3x) = \log_{3} (6x^{2} - 19x + 2)$$

$$\log_{3} (2-3x)^{2} = \log_{3} (6x^{2} - 19x + 2)$$

$$(2-3x)^{2} = 6x^{2} - 19x + 2$$

$$(2-3x)^{2} = 6x^{2} - 19x + 2$$

$$4 - 12x + 9x^{2} = 6x^{2} - 19x + 2$$

$$3x^{2} + 7x + 2 = 0$$

$$(3x + 1) (x + 2) = 0$$

$$x = -\frac{1}{3} \text{ or } x = -2$$

(Both solutions are valid, since they give logs of positive numbers in the original equation.)

#### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms** Exercise G, Question 9

#### **Question:**

If 
$$xy = 64$$
 and  $\log_x y + \log_y x = \frac{5}{2}$ , find x and y. **[E]**

#### **Solution:**

$$\log_{x} y + \log_{y} x = \frac{5}{2}$$

$$\log_{x} y + \frac{1}{\log_{x} y} = \frac{5}{2}$$
Let  $\log_{x} y = u$ 

$$u + \frac{1}{u} = \frac{5}{2}$$

$$2u^{2} + 2 = 5u$$

$$2u^{2} - 5u + 2 = 0$$

$$(2u - 1) (u - 2) = 0$$

$$u = \frac{1}{2} \text{ or } u = 2$$

#### **Edexcel Modular Mathematics for AS and A-Level**

## **Exponentials and logarithms** Exercise G, Question 10

#### **Question:**

Prove that if  $a^x = b^y = (ab)^{xy}$ , then x + y = 1. **[E]** 

#### **Solution:**

Given that 
$$a^x = b^y = (ab)^{xy}$$
  
Take logs to base  $a$  for  $a^x = b^y$ :  
 $\log_a (a^x) = \log_a (b^y)$   
 $x \log_a a = y \log_a b$   
 $x = y \log_a b$ 

Take logs to base 
$$a$$
 for  $a^x = (ab)^{xy}$   
 $x = \log_a (ab)^{xy}$   
 $x = xy \log_a (ab)$   
 $x = xy (\log_a a + \log_a b)$   
 $x = xy (1 + \log_a b)$   
 $1 = y (1 + \log_a b)$ 

But, from ①, 
$$\log_a b = \frac{x}{y}$$

Substitute into ②:

$$1 = y \left( 1 + \frac{x}{y} \right)$$

$$1 = y + r$$

$$1 = y + x$$
$$x + y = 1$$

#### **Edexcel Modular Mathematics for AS and A-Level**

#### **Exponentials and logarithms** Exercise G, Question 11

#### **Question:**

(a) Show that  $\log_4 3 = \log_2 \sqrt{3}$ .

(b) Hence or otherwise solve the simultaneous equations:

$$2 \log_2 y = \log_4 3 + \log_2 x,$$

$$3^{y} = 9^{y}$$

given that x and y are positive. **[E]** 

#### **Solution:**

(a) 
$$\log_4 3 = \frac{\log_2 3}{\log_2 4} = \frac{\log_2 3}{2}$$

$$\log_4 3 = \frac{1}{2} \log_2 3 = \log_2 3^{\frac{1}{2}} = \log_2 \sqrt{3}$$

(b) 
$$3^y = 9^x$$

$$3^y = (3^2)^x = 3^{2x}$$

So 
$$y = 2x$$

$$2 \log_2 y = \log_4 3 + \log_2 x$$

$$\log_2(y^2) = \log_2\sqrt{3} + \log_2 x = \log_2(x\sqrt{3})$$

So 
$$y^2 = x \sqrt{3}$$

Since 
$$y = 2x$$
,  $(2x)^2 = x\sqrt{3}$   
 $\Rightarrow 4x^2 = x\sqrt{3}$ 

$$\Rightarrow$$
  $4x^2 = x \sqrt{3}$ 

x is positive, so  $x \neq 0$ ,  $x = \frac{\sqrt{3}}{4}$ 

$$\Rightarrow \quad y = 2x = \frac{\sqrt{3}}{2}$$

So 
$$x = \frac{\sqrt{3}}{4}, y = \frac{\sqrt{3}}{2}$$

### **Edexcel Modular Mathematics for AS and A-Level**

**Exponentials and logarithms** Exercise G, Question 12

#### **Question:**

- (a) Given that  $3 + 2 \log_2 x = \log_2 y$ , show that  $y = 8x^2$ .
- (b) Hence, or otherwise, find the roots  $\alpha$  and  $\beta$ , where  $\alpha < \beta$ , of the equation  $3 + 2 \log_2 x = \log_2 (14x 3)$ .
- (c) Show that  $\log_2 \alpha = -2$ .
- (d) Calculate  $\log_2 \beta$ , giving your answer to 3 significant figures. **[E]**

#### **Solution:**

(a) 
$$3 + 2 \log_2 x = \log_2 y$$
  
 $\log_2 y - 2 \log_2 x = 3$   
 $\log_2 y - \log_2 x^2 = 3$   
 $\log_2 \left(\frac{y}{x^2}\right) = 3$ 

$$\frac{y}{x^2} = 2^3 = 8$$
$$y = 8x^2$$

(b) Comparing equations,

y = 
$$14x - 3$$
  
 $8x^2 = 14x - 3$   
 $8x^2 = 14x + 3 = 0$   
 $(4x - 1)(2x - 3) = 0$   
 $x = \frac{1}{4}$  or  $x = \frac{3}{2}$   
 $\alpha = \frac{1}{4}$ ,  $\beta = \frac{3}{2}$ 

(c) 
$$\log_2 \alpha = \log_2 \left( \frac{1}{4} \right) = -2$$
,

since 
$$2^{-2} = \frac{1}{2^2} = \frac{1}{4}$$

(d) 
$$\log_2 \beta = \log_2 \left(\frac{3}{2}\right)$$

$$\log_2 1.5 = \frac{\log_{10} 1.5}{\log_{10} 2} = 0.585 \text{ (3 s.f.)}$$