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1. (a) Sketch the graph of  y = x – 2a, given that a > 0.
(2)

(b) Solve x – 2a > 2x + a, where a > 0.
(3)

     

2. Given that 3 + i is a root of the equation f(x) = 0, where

f(x) = 2x3 + ax2 + bx – 10,       a, b  ℝ,

(a) find the other two roots of the equation f(x) = 0,
(4)

(b) find the value of a and the value of b.
(3)

3. Find the general solution of the differential equation

x

y

d

d
+ 2y cot 2x = sin x,       0 < x < 

2


,

giving your answer in the form y = f(x).
(7)
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4.     Figure 1

Figure 1 shows part of the graph of y = f(x), where 

f(x) = x sin x + 2x – 3.

The equation f(x) = 0 has a single root .

(a) Taking x1 = 1 as a first approximation to , apply the Newton-Raphson procedure once 
to f(x) to find a second approximation to , to 3 significant figures.

(5)   

(b) Given instead that x1 = 5 is taken as a first approximation to  in the Newton-Raphson 
procedure,

(i) use Figure 1 to produce a rough sketch of y = f(x) for 3  x  6,

and by drawing suitable tangents, and without further calculation,

(ii) show the approximate positions of x2 and x3, the second and third approximations 
to .

(2)
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5. (a) Express 
)2(

1

rr
in partial fractions.

(2)

(b) Hence prove, by the method of differences, that
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r rr1 )2(

4
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)53(



nn

nn
.

(5)

(c) Find the value of 
 

100

50 )2(

4

r rr
, to 4 decimal places.

(3)

6. (a) Show that the transformation y = xv transforms the equation

x2
2

2

d

d

x

y
– 2x

x

y

d

d
+ (2 + 9x2)y = x5, I

into the equation

2

2

d

d

x

v
+ 9v = x2. II

(5)

(b) Solve the differential equation II to find v as a function of x.
(6)

(c) Hence state the general solution of the differential equation I.
(1)

7. The curve C has polar equation r = 6 cos  , –
2


  < 

2


,

and the line D has polar equation r = 3 sec 





 

3
, –

6


  < 

6

5
.

(a) Find a cartesian equation of C and a cartesian equation of D.
(5)

(b) Sketch on the same diagram the graphs of C and D, indicating where each cuts the 
initial line.

(3)

The graphs of C and D intersect at the points P and Q.

(c) Find the polar coordinates of P and Q. 
(5)
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8. Given that z = 4 





 

4

3
sini

4

3
cos


and w = 1 – i3, find

(a)
w

z
,

(3)

(b) arg 







w

z
, in radians as a multiple of . 

(3)

(c) On an Argand diagram, plot points A, B, C and D representing the complex numbers z, w, 









w

z
and 4, respectively.

(3)

(d) Show that  AOC =  DOB.
(2)

(e) Find the area of triangle AOC.
(2)
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1.
(a)
Sketch the graph of  y = (x – 2a(, given that a > 0.


(2)



(b)
Solve (x – 2a( > 2x + a, where a > 0.


(3)


     


2.
Given that 3 + i is a root of the equation f(x) = 0, where


f(x) = 2x3 + ax2 + bx – 10,       a, b ( ℝ,



(a)
find the other two roots of the equation f(x) = 0,


(4)



(b)
find the value of a and the value of b.


(3)




3.
Find the general solution of the differential equation
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giving your answer in the form y = f(x).


(7)




4.






    Figure 1





Figure 1 shows part of the graph of y = f(x), where 


f(x) = x sin x + 2x – 3.



The equation f(x) = 0 has a single root (.



(a)
Taking x1 = 1 as a first approximation to (, apply the Newton-Raphson procedure once to f(x) to find a second approximation to (, to 3 significant figures.


(5)   



(b)
Given instead that x1 = 5 is taken as a first approximation to ( in the Newton-Raphson procedure,




(i)
use Figure 1 to produce a rough sketch of y = f(x) for 3 ( x ( 6,




and by drawing suitable tangents, and without further calculation,




(ii)
show the approximate positions of x2 and x3, the second and third approximations to (.


(2)




5.
(a)
Express 
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(b)
Hence prove, by the method of differences, that
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(c)
Find the value of 
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6.
(a)
Show that the transformation y = xv transforms the equation
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into the equation
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(b)
Solve the differential equation II to find v as a function of x.


(6)


(c)
Hence state the general solution of the differential equation I.


(1)




7.
The curve C has polar equation
r = 6 cos ( ,

–
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and the line D has polar equation
r = 3 sec 
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(a)
Find a cartesian equation of C and a cartesian equation of D.


(5)



(b)
Sketch on the same diagram the graphs of C and D, indicating where each cuts the initial line.


(3)



The graphs of C and D intersect at the points P and Q.



(c)
Find the polar coordinates of P and Q. 


(5)




8.
Given that z = 4
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(b)
arg 

[image: image17.wmf]÷


ø


ö


ç


è


æ


w


z


, in radians as a multiple of (. 


(3)



(c)
On an Argand diagram, plot points A, B, C and D representing the complex numbers z, w, 
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(d)
Show that ( AOC = ( DOB.


(2)



(e)
Find the area of triangle AOC.


(2)
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