Centre No.	•						Pap	er Ref	ferenc	e (cor	nple	te bel	ow)	Surname	Initial(s)
Candidate No.											/			 Signature	
	Paper Reference(s)														

6101/01 **Edexcel GCE Biology Biology (Human)**

Advanced Subsidiary Unit Test 1

Tuesday 8 June 2004 – Morning

Time: 1 hour

Materials	required	for	examination
Ruler			

Items included with question papers

-		~		
Instructions	tΛ	l an	aia:	ates

In the boxes above, write your centre number, candidate number, your surname and initials, the paper reference and your signature. The paper reference is shown above.

Check that you have the correct question paper.

Answer ALL EIGHT questions in the spaces provided in this booklet.

If you need to use additional answer sheets, attach them loosely but securely inside this booklet.

Show all the steps in any calculations and state the units. Calculators may be used.

Include diagrams in your answers where these are helpful.

Information for Candidates

The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). The total mark for this question paper is 60.

Advice to Candidates

You will be assessed on your ability to organise and present information, ideas, descriptions and arguments clearly and logically, taking account of your use of grammar, punctuation and spelling.

This publication may only be reproduced in accordance with London Qualifications Limited converight policy s)2004 London Qualifications Limited

W850/R6101/57570 7/7/4/3/

Examiner's use only

1

2

3

4	
5	
6	
7	
0	
	-

Turn over

Total

Answer ALL questions in the spaces provided.

1. The following table refers to organelles found in eukaryotic cells. Complete the table by writing the name of the organelle, **two** features of its structure or **one** function of the organelle in each of the four empty boxes as appropriate.

Name of organelle	Two features of structure	One function
	1. Stack of curved cisternae	
		Modification of proteins
	2. Surrounded by many vesicles	-
	1.	
Rough endoplasmic reticulum	2.	
	1.	Site of photosynthesis
Chloroplast	2.	

Q1

2. The diagram below shows four molecules of water.

(a) Name the type of bond labelled ${\bf A}$ on the diagram.

(1)

(b) Explain why water molecules are described as dipolar.

(c) One of the properties of water is that it has a high specific heat capacity. Explain why this property is important for organisms that live in water.

(2)

(Total 5 marks)

(2)

 $\mathbf{Q}\mathbf{2}$

		ch carbohydrate next to its description.
-	Description of carbohydrate	Name of carbohydrate
	A pentose found in transfer RNA	
	A disaccharide consisting of glucose and galactose	
	The carbohydrate transported in the phloem of plants	• •
_	· · ·	(3)
Γ	Describe the structure of cellulose.	
,		
		(3) (Total 6 marks)
		(Total o marks)

Lcave
blank

- The photograph below shows a section through a typical mesophytic leaf, as seen using a light microscope.
 - (a) In the space below, draw a **plan** to show the tissues of this leaf. The scale of your drawing should be ×1. You should **not** draw individual cells.

N (36/09/)

5. The flow diagram below shows a method for preparing and staining cells in order to study stages of mitosis.

(a)	Nar	ne a suitable part of a plant to use, giving a reason for your choice.	
	••••		(2)
(b)	(i)	Explain why staining is necessary in this preparation.	()
	(ii)	Name a suitable stain for this technique.	
			 (1)

%[8609A

(c)	Explain why it is necessary to squash the preparation.	Leave blank
	(1) (Total 5 marks)	Q5
	•	

Where does transcription take place in a eukaryotic cell? (In the type of chemical reaction that occurs when a strand of messenger RN is formed from individual nucleotides. (In the diagram below shows part of a messenger RNA (mRNA) molecule. (In the diagram below shows part of a messenger RNA (mRNA) molecule. (In the diagram below shows part of a mino acids coded for by this strand of mRNA. (In the diagram below to show the sequence of bases on the strand of mRNA.)
Name the type of chemical reaction that occurs when a strand of messenger RN is formed from individual nucleotides. (e diagram below shows part of a messenger RNA (mRNA) molecule. GAACCGGCCGAAUCACC What is the maximum number of amino acids coded for by this strand of mRNA (c) Complete the diagram below to show the sequence of bases on the strand
is formed from individual nucleotides. (e diagram below shows part of a messenger RNA (mRNA) molecule. GAACCGGCCGGAAUCACC What is the maximum number of amino acids coded for by this strand of mRNA (Complete the diagram below to show the sequence of bases on the strand of maximum number of amino acids coded for by this strand of mRNA
e diagram below shows part of a messenger RNA (mRNA) molecule. G A A C C G C C C G A A U C A C C What is the maximum number of amino acids coded for by this strand of mRNA Complete the diagram below to show the sequence of bases on the strand of
G A A C C G C C C G A A U C A C C What is the maximum number of amino acids coded for by this strand of mRNA Complete the diagram below to show the sequence of bases on the strand
What is the maximum number of amino acids coded for by this strand of mRNA Complete the diagram below to show the sequence of bases on the strand of mRNA
Complete the diagram below to show the sequence of bases on the strand of
Complete the diagram below to show the sequence of bases on the strand of
(2
strand of mRNA was found to have 53 codons but the protein produced from ntained only 51 amino acids. Suggest two reasons for this difference.

 $N18609\Delta$

(a)	Describe the surround of translation
	Describe the process of translation.
	,
	(5)
	(Total 12 marks)

NER600A

Turn over

Įį̃.

7. Urease is an enzyme which catalyses the breakdown of urea to ammonia and carbon dioxide.

An experiment was carried out into the effect of pH on the activity of immobilised and non-immobilised urease. 10 cm³ of pH 9 buffer solution was mixed with 10 cm³ of urea solution. This was mixed with urease and the concentration of ammonia in the mixture was measured after 30 minutes.

The procedure was repeated at different pH values for both immobilised and non-immobilised urease, at the same concentrations of enzyme. The results are shown in the graph below.

(a)	Describe how the immobilised urease could be prepared for this experiment.

(2)

(b)		rate of ammonia production for immobilised urease at pH 7 was 2.6 arbitrary
	unit	s per minute.
	(i)	Calculate the rate of ammonia production for non-immobilised urease at pH7. Show your working.
		Answer =
		(2)
	(ii)	Compare the effect of pH on the activity of immobilised and non-immobilised urease.
		•••••••••••••••••••••••••••••••••••••••
		(3)
	(iii)	Suggest why immobilisation has this effect on the activity of urease.
		. (2)
		(Total 9 marks)

1 }

 $\rm N48n09A$

Turn over

Ą

Ęį

L¢	eave
ы	unk

8.	(a)	DNA is replicated by a process called semi-conservative replication. Explain what is meant by the term semi-conservative replication.
		······································
		(4)

(b) When bacteria grow and reproduce they need a nitrogen source. The nitrogen becomes part of their DNA.

Bacteria were placed in a culture medium containing a heavy form of nitrogen. The bacteria were grown and allowed to reproduce for several generations until all the nitrogen in their DNA was heavy nitrogen.

The bacteria were removed, washed thoroughly and then divided into five batches labelled A, B, C, D and E. They were then placed in fresh culture medium and allowed to grow for different periods of time.

Batch A was placed into fresh culture medium containing heavy nitrogen, and left for four generations. The other four batches were placed into fresh culture medium containing light nitrogen and left for different periods of time.

The treatments are shown in the table below.

Batch	First treatment	Second treatment
A	All	Grown in heavy nitrogen for four generations
В	grown in heavy nitrogen	Grown in light nitrogen for one generation
C		Grown in light nitrogen for two generations
D		Grown in light nitrogen for three generations
Е		Grown in light nitrogen for four generations

NISOPPA

The DNA from the five batches of bacteria was then removed, placed on separating solutions and centrifuged (spun). The mass of DNA added to each separating solution was the same.

DNA containing different proportions of heavy and light nitrogen can be seen as separate bands after centrifugation. The heavier molecules are lower down in the separating solution than the lighter molecules. The wide bands contain more molecules than the narrow bands.

The diagram below shows an example of the results of centrifuging a mixture of heavy and light DNA.

The diagram below shows the results for the batches A, B, C and D.

This question continues on page 15

Na Geogra

		Leave blank
(i)	Explain why the DNA from batch B is higher up in the separating solution than the DNA from batch A.	
,		
		ADDE A LA GRADINA
	(2)	
(ii)	Explain the results for batch C.	
		de des care e e e e e e e e e e e e e e e e e e
		An allow the state of the state
	(3)	
(iii)	On the diagram on page 13, draw in the bands you would expect to see for the DNA separated from the bacteria grown in batch E.	
	(2)	Q8
	(Total 11 marks)	12. Table . T
	TOTAL FOR PAPER: 60 MARKS	
	END	

NE8609A

