Surname				Other	Names			
Centre Nu	mber				Candid	ate Number		
Candidate	Signat	ure						

Leave blank

General Certificate of Education January 2004 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

ESC3

ENVIRONMENTAL SCIENCE Unit 3 The Biosphere

Friday 9 January 2004 Afternoon Session

No additional materials are required:

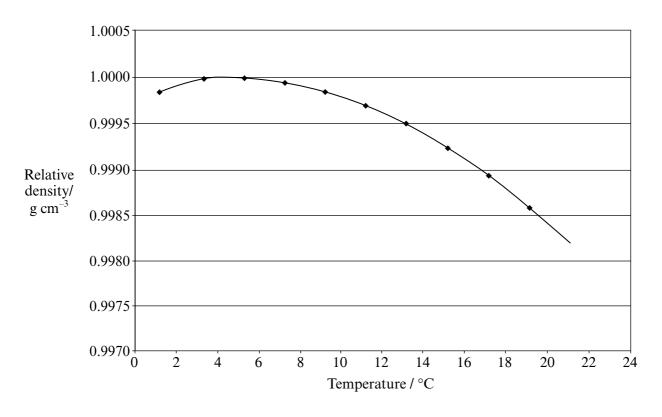
You may use a calculator.

Time allowed: 1 hour

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information


- The maximum mark for this paper is 60.
- Mark allocations are shown in brackets.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use								
Number	Mark	Numbe	r Mark					
1								
2								
3								
4								
5								
6								
7								
Total (Column	1)	\longrightarrow						
Total (Column 2) →								
TOTAL	TOTAL							
Examine	r's Initials							

SA4521/0104/ESC3 6/6/6/1920 **ESC3**

Answer all questions in the spaces provided.

1 Water has many special properties which support life on Earth. The graph shows the relationship between water density and temperature.

(a)	Describe	the	relationship	shown	by	the	graph.	

(1 mark)

(b)	Explain how th	e change	in water	density	protects	aquatic	animals	when	temperatur	æs
	fall below 4 °C.									

 •••••	•••••	•••••
 •••••		

(2 marks)

2 Middleham in the north east of England is privately owned land that has been designated as a Site of Special Scientific Interest (SSSI). The diagram shows part of the SSSI.

		Key	
			Public right of way
,			Wetland conservation area
			Main areas of erosion
ı	SKERNE WATER N	E	Woodland
(a)	What is the criterion for designating a site as	a SSSI?	
			(1 mark)
(b)	At Middleham, over a period of time, the operand then into a woodland community. Name		
			(1 mark)
(c)	Fenced off areas of erosion are now regenerat	ing natural	lly. Name this process.
	Process		
			(1 mark)

 $\left(\frac{}{3}\right)$

TURN OVER FOR THE NEXT QUESTION

(a) (i)	State the difference between population size and population density.
	(2 marks)
(ii)	Describe two ways in which governments have attempted to regulate human population.
	1
	2
	(2 marks
(b) The	e diagram shows a predicted age-sex pyramid for the UK in 2010. Age in years

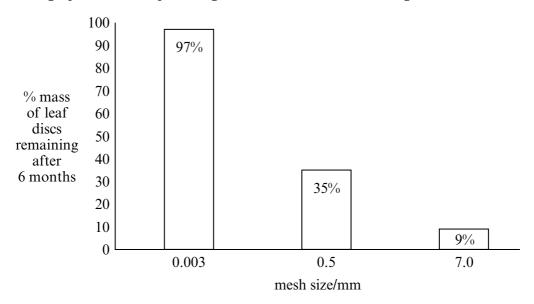
..... million

Estimate the number of people born between 1966 and 1970 who would be alive

..... million

(1 mark)

(1 mark)


in 2010.

	(iii)	Outline how the shape of the pyramid in 2010 may have major ecimplications for the UK in the future.	onomic
		(2	marks)
4		Text extract from: Environmental Biology , Routledge 1997 pg 67 – not reproduced here, due to third-party copyright constraints.	
(a)		Question 4(a) not reproduced here, due to third-party copyright constraints.	
		(2	marks)
		QUESTION 4 CONTINUES ON THE NEXT PAGE	

Turn over ▶

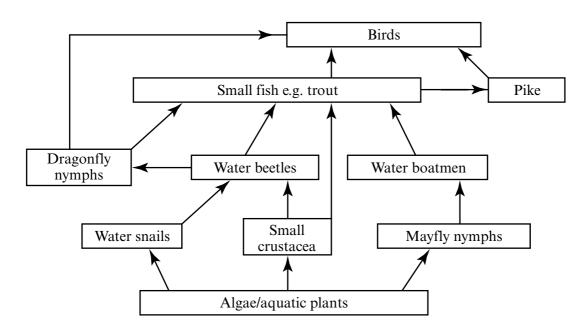
(b) An experiment was carried out to investigate the role of detritivores in the soil. Twelve mesh bags, of three different mesh sizes, were filled with leaf discs and buried underground.

The graph shows the percentage mass of leaf discs remaining after six months.

(i)	Suggest four examples of good scientific practice that would have been used by the
	researcher collecting these data.

1.		 		
•••		 		
2.	• • • • • • • • • • • • • • • • • • • •	 		
•••		 		
3				
4.	• • • • • • • • • • • • • • • • • • • •	 	•••••	
•••				(4 marks)

(ii)	Use the data t	o explain	the role of	detritivores	and dec	composers in	the soil.


 •••••		•••••
	•••••	•••••

(4 marks)

5 Asto	n Rov	want, in Oxfordshire, is designated as a National Nature Reserve (NNR).							
(a)	State	e one organisation which manages NNR's and outline one purpose of an NNR.							
	Orga	nnisation							
	Purp	oose							
	•••••	(2 marks)							
(b)	The Row	thyme leaved sandwort, <i>Arenaria serpyllifolia</i> , is an annual which thrives at Aston ant.							
underde	evelop	ed seedlings/% 40- 20- 100 200 300 400 initial number of seedlings in m² quadrat Source: T. J. King, Selected Topics in Ecology (Nelson) 1984							
	(i)	Describe and explain the data shown in this graph.							
		Description							
		Explanation							
		(3 marks)							
	(ii)	The death rate of seedlings increases during the summer. Suggest how this may have been caused by a:							
		density dependent factor;							
		density independent factor.							

6 (a) The diagram shows a food web from a river.

With reference to the diagram, explain the short term impact of a drop in mayfly numbers on the population of:

(i)	algae;	
		(2 marks)
(ii)	water snails;	
		(2 marks)
(iii)	trout.	
		(2 marks)

(b) The table shows the results of a freshwater invertebrate survey of a Dorset river in 1990.

Invertebrate group (common names)	Number of individuals
Caddis fly larvae	13
Freshwater shrimp	22
Mayfly larvae	18
Water hoglouse	23

14

(3 marks)

Answer

7 The southern white rhino, a sub species of the African white rhino is now classified as critically

endangered. Their horns are still used to make ceremonial dagger handles. The future of the rhino depends on the development and operation of effective conservation strategies.	ıe
(a) CITES is a conservation strategy that makes international trade in the products of endangered living species illegal. Suggest why CITES has led to increased poaching of the rhino.	of of
	••
(2 marks	 ;)
(b) There are only 25 southern white rhino in the wild. Explain the significance for the survival of such a small population.	ir

Outline species.	the	strate	gies,	other	than	CIT.	ES, f	or th	ie co	nserv	ation	of	any	endar	ng
			• • • • • • • • • • • • • • • • • • • •				•••••					•••••			· • • •
															· • • •
•••••	•••••	•	• • • • • • • • • • • • • • • • • • • •	•••••	••••••	••••••	•••••	•••••	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	••••••	•••••	•••••	••••••	•••
•••••	•••••		• • • • • • • •	•••••	•••••		•••••	•••••		• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	•••••	•••
	•••••		•••••	•••••	•••••		•••••	•••••		•••••		•••••	•••••	••••••	•••
	•••••		• • • • • • • • • • • • • • • • • • • •		•••••		•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••		• • • •
			• • • • • • • •		•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •			•••••		•••
												•••••			
•••••	•••••	•	• • • • • • • • •	•••••	••••••	••••••		•••••	•••••	•••••	••••••	•••••	••••••	••••••	•••
•••••	•••••		• • • • • • • • •	•••••	••••••	••••••	•••••	• • • • • • • • • • • • • • • • • • • •		•••••	••••••	•••••	••••••	••••••	•••
•••••	•••••		• • • • • • • •	•••••	•••••		•••••	•••••	•••••	•••••	•••••	•••••	•••••		•••
	•••••	••••••	•••••	•••••	•••••		•••••	•••••	•••••	•••••	••••••	•••••	•••••		•••
	•••••		•••••	•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••		•••••	•••
	•••••							• • • • • • • • • • • • • • • • • • • •				•••••			· • • •
															· • • •
															· • • •
•••••	•••••		•••••	•••••	••••••	••••••		•••••	••••••	•••••	••••••	•••••	••••••	••••••	•••
	•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	••••••		•••••	•••••	•••••	•••••	••••••	•••••	••••••	•••••	•••
	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • •	•••••	••••••		•••••	•••••		•••••	• • • • • • • • • • • • • • • • • • • •	•••••	•••••	•••••	• • •
			•••••				•••••	• • • • • • • • • • • • • • • • • • • •		•••••		•••••	•••••	(10 n	

 $\left(\frac{15}{15}\right)$