Surname				Other	Names				
Centre Nun	nber					Candid	ate Number		
Candidate Signature		ıre							

General Certificate of Education January 2003 Advanced Subsidiary Examination

ASSESSMENT and QUALIFICATIONS ALLIANCE

ESC₁

ENVIRONMENTAL SCIENCE Unit 1 Energy, Atmosphere and Hydrosphere

Friday 10 January 2003 Afternoon Session

No additional materials are required. You may use a calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use blue or black ink or ball-point pen.
- Fill in the boxes at the top of this page.
- Answer all questions in the spaces provided. All working must be shown.
- Do all rough work in this book. Cross through any work you do not want marked.

Information

- The maximum mark for this paper is 70.
- Mark allocations are shown in brackets.
- You will be assessed on your ability to use an appropriate form and style of writing, to organise relevant information clearly and coherently, and to use specialist vocabulary, where appropriate.
- The degree of legibility of your handwriting and the level of accuracy of your spelling, punctuation and grammar will also be taken into account.

For Examiner's Use					
Number	Mark	Number	Mark		
1					
2					
3					
4					
5					
6					
7					
Total (Column	1)	\longrightarrow			
Total (Column					
TOTAL	TOTAL				
Examine	r's Initials				

Copyright © 2003 AQA and its licensors. All rights reserved.

Answer all questions in the spaces provided.

- 1 A microclimate may occur in an area where localised factors influence the regional climate.
 - (a) Outline **two** ways in which buildings may produce microclimates.

	· • • •
(2 mark	s)
(2 mark	

(b) Complete the graph with **two** labelled lines to show how wind speed and humidity at ground level, change downwind of a hedge.

(2 marks)

2	A major advantage of nuclear power is that the fuel has a high energy density. The equation
	shows the reaction for the release of energy during a nuclear reaction.

$$E = mc^2$$

(a)	What do the letters m and c represent in this equation?
	<i>m</i>
	c(1 mark)
(b)	For a nuclear fission reaction to occur, a critical mass of a fissile fuel must be present.
	Outline what is meant by:
	critical mass;
	(2 marks)
	fissile fuel.
	(2 marks)

TURN OVER FOR THE NEXT QUESTION

3	(a)		ribe how the atmosphere naturally prevents most ultraviolet light (UV) from the from reaching the Earth's surface.
		•••••	(3 marks)
	(b)	(i)	Describe how a pollutant released by human activities may result in more UV light reaching the Earth's surface.
			(3 marks)
		(ii)	Give an international agreement intended to limit this damage to the atmosphere.
			(1 mark)
	(c)	State	one industrial use of UV light.
		•••••	(1 mark)

4 Complete the table which shows some of the processes used to produce potable water (water of drinking quality).

Name of process	Purpose of process	Principle of operation of process
Screening		Water passed through wire sieves
Sedimentation	Removal of suspended solids	
Flocculation	Removal of colloidal solids, eg clay particles	
	Kill pathogens	Substance added is toxic to bacteria & other pathogens
Fluoridation		Addition of sodium fluoride solution

(5 marks)

TURN OVER FOR THE NEXT QUESTION

Turn over ▶

5 The power output from an aerogenerator is not proportional to wind speed.

The diagram shows the variations in power output from a typical aerogenerator.

(a) Explain the changes in power output shown for:

(i)	D–E;	

• • • • • • • • • • • • • • • • • • • •		

(1 mark)

(ii) **E-F.**

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	 •	• • • • • • • • • • • • • • • • • • • •

(1 mark)

(b) The table shows the effect of changing wind speed and blade diameter on the electrical output (Watts) of one design of aerogenerator.

Blade		Wi	nd speed/kilo	metres per h	our	
diameter/ metres	8	16	24	32	40	48
0.6	0.6	4.8	16.0	38.4	73.0	128.0
1.2	2.4	19.2	64.0	153.6	292.0	512.0
1.8	5.0	40.0	140.0	320.0	660.0	1120.0
2.4	9.6	76.8	256.0	614.4	1168.0	2048.0
3.0	15.0	120.0	400.0	960.0	1840.0	3200.0
3.6	20.0	160.0	560.0	1280.0	2640.0	4480.0
4.8	38.4	307.2	1024.0	2457.6	4672.0	8192.0
6.0	60.0	480.0	1600.0	3840.0	7360.0	12 800.0
7.2	80.0	640.0	2240.0	5120.0	10 560.0	17 920.0

	(1)	How does the power output of the aerogenerator change if the blade diameter is doubled?
		(1 mark)
	(ii)	How does the power output of the aerogenerator change if the wind speed doubles?
		(1 mark)
(c)	Nam	the two other renewable energy resources which harness naturally occurring kinetic gy.
	1	
	2	(2 marks)

TURN OVER FOR THE NEXT QUESTION

 $\sqrt{6}$

6 The diagram shows some of the features associated with different types of aquifers.

Key	
	permeable rock
	impermeable rock
	saturated aquifer
V///////	water in well

(a) Which of the letters on the diagram correspond to the following features?

Water table	
Unconfined aquifer	
Confined aquifer	
Aquifer recharge area	
Spring	
Flowing artesian well	
Non-flowing artesian well	
Catchment area	

(4 marks)

(b)	Explain the terms:	
	(i) porous;	
		(2 marks)
	(ii) permeable.	
		(2 marks)
(c)	Exploitation of groundwater at an unsustainable rate may reduce fu	ture water cumplies
	r · · · · · · · · · · · · · · · · · · ·	iture water supplies.
	(i) Outline two other problems caused by unsustainable groundw	
		ater exploitation.
	(i) Outline two other problems caused by unsustainable groundw	ater exploitation.
	(i) Outline two other problems caused by unsustainable groundw 1	ater exploitation.
	(i) Outline two other problems caused by unsustainable groundw 1	ater exploitation.
	(i) Outline two other problems caused by unsustainable groundw 1	(2 marks)
	(i) Outline two other problems caused by unsustainable groundw 1	(2 marks)
	(i) Outline two other problems caused by unsustainable groundw 1	(2 marks)
	(i) Outline two other problems caused by unsustainable groundw 1	(2 marks)

QUESTION 6 CONTINUES ON THE NEXT PAGE

	(ii)	Outline two advantages of using water from aquifers for public water supplies.
		1
		(2 marks)
		2
		(2 marks)
(d)		y countries, such as Malta and Saudi Arabia, produce drinking water by the ination of sea water.
	Outli	ine a named method of sea water desalination.
	Meth	nod
	Desc	ription
	•••••	

	(4 marks)
(b)	Outline why an oil company may decide not to exploit an oilfield even though oil has been found.
(c)	(2 marks)
(c)	Outline two techniques which may be used to continue crude oil production when the
(c)	Outline two techniques which may be used to continue crude oil production when the
(c)	Outline two techniques which may be used to continue crude oil production when the
(c)	Outline two techniques which may be used to continue crude oil production when the
(c)	Outline two techniques which may be used to continue crude oil production when the natural pressure of primary recovery in the oilfield has declined. 1
(c)	Outline two techniques which may be used to continue crude oil production when the natural pressure of primary recovery in the oilfield has declined. 1
(c)	Outline two techniques which may be used to continue crude oil production when the natural pressure of primary recovery in the oilfield has declined. 1

QUESTION 7 CONTINUES ON THE NEXT PAGE

(d)	Describe how geographical location and site-suitability may influence the decision to harness renewable energy resources.
	(10 marks)

