OCR¥

RECOGNISING ACHIEVEMENT

Exemplar Candidate Work

GCE Computing

OCR Advanced GCE in Computing H447

Unit: F454 Computing Project

© OCR 2011

Contents
Introduction
Moderator’'s Commentary:

Candidate’'s work

o A W N

2 of 125 GCE Computing

Introduction

This exemplar material serves as a general guide. It provides the following benefits to a teacher:
o Gives teachers an appreciation of the variety of work that can be produced for this unit

) Shows how the mark scheme has been applied by a senior assessor

o Provides examples of both good and weak application of different parts of the mark scheme

) Provides real examples of work conducted under controlled assessment conditions.

It is important to make the point that the teacher support materials play a secondary role to the
Specification itself. The Specification is the document on which assessment is based and specifies
what content and skills need to be covered in delivering the course. At all times, therefore, this
teacher support should be read in conjunction with the Specification. If clarification on a particular
point is sought then that clarification should be found in the Specification itself.

GCE Computing 3 of 125

Moderator's Commentary:

Section a

An interesting start, the result and the approach are both declared in the first sentence, this would
have suggested problems under the previous specification and that there was unlikely to be any
realistic end user involvement in the design and development process. In this case, as we read on,
the project clearly identifies a suitable end user group. The background to the proposed project is
clearly set out following on from some very interesting research into the development of the game
so far. The section then clearly includes excellent interaction with the end user and a full analysis
of their feedback leading to a detailed requirements specification including the hardware and
software.

The evidence may not be in clearly delineated sections but it is presented clearly and logically.
There is evidence of good research beyond a basic interview and we are left in no doubt about the
validity of the end user involvement, and what the project is all about.

Mark: 13 (Max 14)

Section b

There is a fully detailed design including measureable objectives, evidence of end user
involvement and of an iterative process leading to a fully agreed final design. Any equally skilled
programmer would be able to take this design and produce the same (or at least very similar) end
product. This is an excellent example of the design process .

There is a test strategy explain how the system will be tested as it is developed including a detailed
test plan. | would have liked to see how the test plan was designed to be used during the
development phase to check each element of the process and what data would be used to
complete the final testing. This is a minor point but one worth making.

There is a complete set of algorithms and we are left in no doubt that this has been thoroughly
checked to establish that it is a solution to the problem.
Mark: 16 (Max 16)

Section c (i)

There is mention of some testing and modification during development though there could be more
evidence here of the development process, evidence in the later sections demonstrates the
development process adequately and should be credited here.

The test plan is applied to the finished product and there is copious evidence to show that this has
been done and that the system works. For development what we have is some mention of a break
point in the code, annotated code and a brief discussion of the process. This might have been
better presented as an iterative process showing the stages in the development of the system.
There are some minor issues with the evidence presented hence:

Mark: 15 (Max 16)

4 of 125 GCE Computing

Section c (ii)

It is clear that the system has been fully tested post development, that there has been some end
user testing, though little evidence of the end user testing is available (perhaps this is limited by the
use of paper based evidence). The response to the testing is excellent and there is evidence of
improvements / modifications being made to the system in light of the test results. An excellent
section.

Mark: 14 (Max 14)

Section d

There is excellent on screen help for such a system and all the additional documentation that could
be required is available, hence
Mark: 10 (Max 10)

Section e

The evaluation discusses the system objectives one by one with evidence of what was achieved.

The response to the end user testing shows a summary of the end user feedback and there is
some brief response to the largely positive feedback and to the minor criticisms

The good and bad points are clearly identified and there is some discussion about how the
negatives can be resolved.
Mark: 10 (Max 10)

Total mark for portfolio: 78 (Max 80)

GCE Computing 5 of 125

Candidate’s work

6 of 125 GCE Computing

Page |1

A2 Computing Prc:jer:t

GCE Computing 7 of 125

Page |2

Contents

Section 1- Definition, investigation and ANAISIS....... e e —————
Problem definiion. ... e e ane e s
CUrFrent SySEEMS PrOCess MO o . o eee e rssse s rrssrras s rsesr e srsass s seeesrasernns s raes s saanes essar s asmss
SBIBCUICT OF ISR DU rssranmrssrennssssasssssssssassss bsssnnss s nsns oo vedams setdsssmsd 44 4mmta asams s ssnmnss 11 4asnn ammmnnssnn
Investigation and analysis...........
L T =T Lt T S PO
IV R T BTV MY BB BES. cuviunecotiaimcriesiismss i b bbb 4 4 64 0 b0 S e
BBOOTI I B VI 1 evaaicriianmecrrrnsme s sarne s sme e amams s 00 8 mE SE LEE£4425 BE 54408560 143550084 5EEEEEESEEEE S 1149950008888 £0m0r
Results of SEcornt INEErVIEW.. i e s e smsss s samsssiamsss s asssmssssssses L1
Analysis of SEcond INEEMVIEW FEEURSw s issm s sssmssssssassses s sssss sssecessascss ssce s 1
Requirements SPeCifiCaHION. . e s s s s s s srssss srssssssss senss sssssssassanns e s L
Hardware and software requimremEntS... e e s s

o o Wiy ;o e

Section 2= Design ~Nature of thie SOIUEION ... s s s s ms s sresrs s e e ansms ot s50es 6
LI L RO |
Interface Design 10 Level SeleCtion SOMEBTL ..o i s sessasmrs srassimssss sessssamsssassmsss car smssss srmses LB
Level selection SCrEen IMtEMVIEW. .. ssseser s samssssnmses s reassssmsemcemsanees SR
Interface Design 2 INStrUCtonS SEBEM. ..o e sssrmans s e sesssssrsmsnsssms e emsrsssarassmore s ok
INSErUCHIONS SCFBEN IMTEBIVIEW. .. veessersesersssssnssmes rrsansrssmss srssses s ssrsmsarassmmas rossms smssmassems oo nsmmsssmmnsses B4
Interface Design 22 GamMEPIaY SEFBEM. v rmc e s iresms s s s ssmsss s sass s sstssss s sssss emms s ees
GAMEPIAY SOOI IVRIVIDW. .1ttsersrttsorisnstrisesiss biiansas rbissk Hasbistat et sbiabit s impi s i bas s b A8 8 nbbISEH B SARE
Armendments to design obECEIVES. ... ceeieissssisse e csnssemer o 1ebsrsstm sttt iebassns s paanrntanenbpens g
Miodular design of snake — STrUCEURE diBEFAM. .o sssee st bens e sotssmmte e siessims 5 pes I
Data struchUne QRSIEM. oo iiiieisinnisessimens brasesmrssssenssmmcs srmsesem emeenims srmdrmes SRR |
Test strategy & test plan.... wrsrennerb s
BT R L PP PP |

Section 3- Software development and testing.........
Part 1 — SOTWare deve OB i siiiasssmitsssrs s prasesisis PR ¥
Part 2 = Testing .o crrre sissmsrirsinnnses
Screenshots from testing
Result of teSting ... oemimiiimss s
Evidence of improvements ..o eee s

Annotated code = form named frmSnake. ...,
Annotated code — form named frminstructions. ..o i e 98
Annotated code — module named MdISNKE. ..o s s s 29
Section 4- Additlonal documentation.... ... e e sas cenescsmes e IRSEF b after page 99

Section 5- EVAIBHION.....ccciiniimmiisnsmsim e misss s s s s s e sssssssssse U0 0
Part 1 - The degree of success in mesting the ariginal ohjectives .o vevecverecieneeae. 100

Part 2 = An evaluation of the user’s response Lo the system SO L1
Part 3 - Desirable xbenShomnS. o s s siacsissssassb i nossssennmssiisanss st sesns s vesss 1O

8 of 125 GCE Computing

FPapge |3

Section 1 — Definition, investigation and analysis

Problem Definition

Using Visual Basic 6.0, | am going to develop a version of the computer game commonly known as
"srake” that was popularised by Its inclusion in Mokia mobile phones from 1997 onwards. The game
allows the user to control the movement of a ‘snake’ [represented by a series of connected blocks
called ‘bits’) that is constantly in motion, by adjusting the direction that the snake's head is facing.
The snake’s ‘body’ then follows the path of the head.

in most versiens of Snake, the game ends when the user crashes the snake's head into its
trailing body, or when the snake's head comes into contact with the borders of the game screen. The
objective of the game is to collect “food’ by directing the snake’s head onto food icons that appear
(one at a time) randomly on the game screen, thus awarding the user with points. With each piece of
food that Is eaten, the snake becomes longer thus increasing the difficulty of the game. Here | shall

} Include screen shots from various versions of the Snake game.

Design image of the original “Snake’ game made for the Nokia 6110 in 1957

GCE Computing 9 of 125

Pege |4

Design image of "Snake |I°, included in the Nokla 3310. This was the first snake game Lo include the
ahility to go ‘through' one side of the game screen and re-emerge out of the opposite side, as well as
the concept of ‘levels’ that are advanced through by the player.

O ez o arkipel . f T AL o

Design screen from “Snake EX', the first snake game to include colour.

Thh i

10 of 125 GCE Computing

rPage |5

Current systems

I shall now illustrate using a simple process model the gameplay mechanic of a typical Snake game.

Start J
:

» | Snake moves in direction it s |
faclng

)

Does snake collide with
borders of game screan?

Game ends J

1

Does snake collide with
tralling body?

Does snake collide with
food?

Snake gets
longer

| o
¥

- Player changes
snake direction

Direction
selacted

Up Dowin Left Right

Snake faces the direction selected —|

GCE Computing 11 of 125

Fage |§

Selection of user group

My end user will be anyone who wishes to play the game — most probably students. As such, | shall
correspond with students from sixth form colleges with regards to user requirements and feedback
throughout development. There are many features that can be incdluded a Snake game, for example
the ability to go ‘through® one side of the game screen and re-emerge out of the opposite side, or to
have different difficulty levels. In order to discover what features are desired by my user group and
to thereby develop a requirerants specification | shall conduct a series of interviews on students
aged 17-18,

12 of 125 GCE Computing

Page |7

Investigation and analysis

| intend to interview a range of students aged between 17 and 18, from various sixth form colleges
and these are the guestions that | intend to ask:
* Have you ever played a version of ‘Snake’?
+ |f s0, how many different versions of the game have you played?
What features [for any of the versions that you have played) did you like?
What features, if any, did you dislike?
» Are there any novel features that you would like to see in a new version of ‘Snake’?

L]
*

Initial interview results

| have interviewed seven students and here | shall compile all sensible responses, in order of the
freguency with which they occurred. The frequency of each response is written in parentheses. |

] shall treat this group of students as my user group and will therefore return to them for feedback
throughout development. Thelr names are: Thomas Bates, Sebastian Zepata, Sunco Park, Kristian
Dainton, Joseph Regers, Abhiram Nandakumar and Lovise Lord

Have you ever played a version of “Snake’y

e Yes(7)
If 50, how many different versions of the game have vou played?
& At least three (4)
» Two(2)
* One (1)

What features {far any of the versions that you have played) did you like?

) » The ahility to change the speed of the snake (5]
A large screen size (5)
s The ability to advance through ‘levels’ of the game, each with varying difficulty (3)
s The inclusion of different kinds of ‘feod’ for the snake that awarded the player with
additional points (2)
A multiplayer mode (1)
& The abllity to go through walls (1)

What features, if any, did you dislike?

* The ability to go through walls — because it made the game too easy (5)
s The lack of colour (4)

» Brevity of the game (1)

Are there any novel features that you would like to See in & new version of ‘Snaka’?

GCE Computing 13 of 125

Page |B

* The ability to advance through ‘levels’ of the game (3)

+ |mproved agsthetics - e.g. inclusion of colour (3}

= Ability to ‘save’ the game in order to return to a particular snake speed and length (3)

+ Ability to change starting length of the snake (2)

= Ability to change speed of snake (2)

» Inclusion of food items that penalised the player, e.g. by making the screen turn black (1)

Analysis of initial interview results

All seven interviewees had played ‘Snake’ in at least one of its many forms, and many of them had
played several different versions. This means that although there are multiple features that the
interviewees liked/disliked, they wera not all necessarily referring to the same version of "Snake’.

For this reasan, it would not be sensible to include all features that were liked, as they may
not all be compatible for simultaneous inclusion in one version of Snake”. Also, not all requested
features can be included as they may be incompatible with other features. Instead, | shall create a
new version of Snake’ that contains a combination of the mast popular features, together with the
mast commonly requested new features (that would be compatible with the other features). By
‘compatible’ | mean, for example, that having a large screen size would be incompatible with the
ability ta po thraugh walls, as this would make the pame too easy; whereas having a large screen size
is perfectly compatible with the ability to change the speed of the snake.

Some interviewees had conflicting opinlions, for example the ability to go through walls was
a feature that was liked by some and disliked by others. In considerations such as these, | shall go
with the preference of the majority |provided their preference is compatible with other features to
be included.)

Rased on the results of the initial interview, together with considerations of feature compatibility, |
have decided upon the following requirements;

Basic Requirements

1} The game ends when the snakes head collides with its body

2} The snake s constantly in motion

3} The player is able to cantral the direction that the head is facing

4) The snake’s bady follows the path of the head

5) The player is able to direct the head of the snake anto food” lkems

6) Eachtime a food Item |s eaten, another will be placed randomly on the game screen

Variable features

7) The screen size is large

8) The game ends when the snake’s head collides with the borders of the game screen

9) The player progresses through ‘levels’ of the game. The level number is incremented
each time a certain number of food items are ‘eaten’

10} At each new level the speed and length of the snake is increased

11) The player iz able to choose the level at which he/her begins the game from (tharefore
the player will be able to control the length and speed of the snake, and this also allows
& user to continue a previous game In the sense that they will be able to start from a
speed and length that they were previously on)

12} Colowrs {that have been determined by the user group) will be used

14 of 125 GCE Computing

Second interview

Page |9

To determing whether the variable features satisfy my user group's requirements, and to decide
upon details such as the number of food items to be eaten in order for a level to be incremented,
and to obtaln values to be used for the size of each snake bil’ etc, | shall conduct another interview

on each of the seven students of niy user group.

These are the questiens that | intend to ask:

GCE Computing

L]

Are you satisfied with the variable features listed?
If not, what changes would you wish to be made?
How large would you like the screen size for the game to be (relative to monitar size of
rasolution 1280x1024)7
o Approximately 1,2 size (G00xE00)
a Approximately 1/3 size (400300}
o Approgimately 3/4 size (900300)
a Other
If the player is to advance through levels of increasing snake length and speed, how many
“food' items should be eaten by the snake before the level is incremented?
Approximately how large should each snake “bit” bet
o Very small (5x5 pixels)
Srnall [10x10 pinels)
wiedium (15x15 pixels)
Large (20x20 pixels)
Wery large [25x25 pivels)
Dther
How far (In plxels) should the snake's minimum movement be?
Approximately how large should each food item be?
o Very small [5x5 plyels)
Small [10x10 plxels)
Medium [15x15 pixels)
Large {20x20 pixels)
Yary large (25525 pixels)
Other
By how many ‘bits’ of length should the snake increase at each level?
How many ‘bits’ should the snake consist of at the beginning of level 17
With regards to the increase of snake speed at each level, how great do you think the
change should be - |.e. would you rather the game have a shallow, medium or steep
difficulty curve? [Shallow = decrease in time interval between snake movements of 10
milliseconds, Medium = decrease in time interval between snake movements of 20
milliseconds, $teep = decrease in time interval between snake movements of 30
milliseconds}
What should the time interval between snake movements be for level 17
o 100

[T T = N = R o]

o O o o O

15 of 125

16 of 125

Page |10

o 200
a 300
How many levels should you be able to choose from?
How many levels should there be in total?
Should the player use a keyboard or a mouse to control the snake?
o If Keyboard: Which keys should be used to control the snake?
o IFMouse: Should the player control the snake by moving the mouse or by clicking on
areas of the screen?
Should the player be able to lose the game by making the snake go back on itself {i.e. by
changing the direction that the head Is faclng from right to left}?
What colour(s) would you like to see used for the snake, the food items and the
background?
WWhat should be displayed on the initial level selection scraen’?
How should the level be selected?
Which direction should the snake’s head inftially face?

To demonstrate aesthetic features of size that may seem abstract to my users, | shall show them the
following screenshots of a Visual Basic form with objects of sizes corresponding to the questions |
ask.

w Forimd

A

OBJECT SIZE :
5X5 PIXELS

OBJECT SIZE :
10X10 PIXELS

OBJECT SIZE : OBJECT SIZE :
15X15 PIXELS 20X20 PIXELS

w. Form1

OBJECT SIZE :
25X25 PIXELS

GCE Computing

Page |11

Results of second interview

mgain, here | shall compile all responses, The frequency of each response 5 written in parentheses,

Are you satisfled with the varialtile features listed?

* Yes(B)
« MNall}

If nat, what changes would you wish to be made?

« The game should not end when the snake collides with the borders of the game screen, but
the player should be able to ‘go through’ these borders and re-emerge out of the opposite
side of the game screen (1)

' J How large would you like the screen size for the game to be (relative to monitor size}?

+ Approximately 3/4 size (900x900] (3)
» Approximately 1/2 size (600x600) (2)
s Approxmately 1/3 size (400x200] (2)

s Other (0]
If the player is to advance through levels of increasing snake length and speed, how many foopd’
items should be eaten by the snake befare the level is incremented?

* Five (4}

s Four(2)

* Soven (1)
Approximately b uld each snake "bit’ be

* Very small [5x5 pixels) (1)

» Small {10x10 pixels) {3)

* Medium (15215 pixels) (1)
o Large (20020 pixels) (0}

Very large (25225 pixels) (0)
= Other (0]

How far {in plxels) should the snake’s minimum moevement be?

s Same as length of snake bit (7)
s Other (0]

Approximately how large should each food item be?

e Very small (5x5 pixels) (1)

GCE Computing 17 of 125

« Small (10x10 pixels) (5)

s pedium (15215 plxels) {0)
Large (20620 pixels) (1)

& \ery large (25225 pixels) [0}
« Other |0}

By how many “hits’ of length should the snake increase at each level?

S (3)
* Two(2)
Five (2}

How many ‘bits’ should the snake consist of at the beginning of lewel 17

» Thirty (4)
» Twenty (2} |
« Ten (1)

With regards to the increase of snake speed at each level, how great do you think the change should
e - .2, would vou rather the game have 3 shallow, medium or steap difflculty curve? [Shallow =

decrease in time interval between snake movements of 10 milliseconds, Medium = decrease in time
interval between snake movemnents of 20 milliseconds, Steep = docrease in time interval between
snake movements of 30 milliseconds)

+ Shallow (5)
* Medium {2)

wh 1 ime interval between snake movements be for level 1 {in milliseconds|?

s 100(5)
= 200(2)
* 300 (0)

How many levels should you be able to choose from?

& Thirty (1)
s Unlimited {2}
* Ten(d)

How many levels should there be in total?

* Unlimited (6]
® Fifty {1)

18 of 125 GCE Computing

Page | 13

Should the plaver use a keyboard or 3 mouse to control the snake?

s Keyboard (7)
o Keyboard: Which keys should be used to control the snake?
* Directional butbons (7}

Should the player he able to lose the game by making the snake go back on itself {i.e, by changing
irection that the head is facing from right to left)?

Noi7)

What colour{s) would you like to see used for the snake, the food items and the background?

Snake

= Green (4]

] # Rad (1)

= Purple {1)

s Doen'tmind (1)
Faod

« Pink(4)

» Red(2)

» Yellow (1)
Background

+ Black (4)

& Blue {2)

* Green(l)

What should be displayed on the initial level selection screen?

} # Instructions on how to play the game (3}
* Instructions on how to select a level (3)
¢ Don'tmind (1)

How should the level be selected?

» With a drop down list and combo box (4)
* With a text box and combo box (2}
» Don'tmind (1)

Which directien should the snake’s head initially face?
. Right(7)

GCE Computing 19 of 125

Analysis of second interview results

The vast majority of my user group was satisfled by the varlable features that | had decided wpon,
and for this reason | shall ignore the single objection.

With regards to the preferred values for the variable features, | shall go with the preference of the
majority in order to create a requirements specification,

Reguirements Specification

User Requirements

1) Design requirements
a. The screen size is large = (900x900 pixels)
The colour of the snake will be: green
The colour of the food will be: pink
The colour of the background will be: black
Each ‘bit’ of the snake will be 10x10 pixels in size
The snake should start at a length of thirty "bits’ on level 1
The snake's head should Initially be facing right
Each food item will be 1010 pixels in size
The time Interval between each snake movement at level 1 will be 100
milliseconds
. There s no pre-defined limit on the number of levels to be played thraugh
(instead this is limited by the skill of the player)
) Input requirements
a. The player is able to choose the level at which he/she begins the game from
(between 1 and 10} with the use of a drop down list and combo box
b, The player is able to control the direction that the head is facing with the use of
the directional keys on a keyboard, however the snake cannot go back on itself
3] Processing requirements
a. The caordinates of the snake’s head need to be continually incremented by 10
pixels In the direction that the snake’s head s facing at a time interval that is
determined by the level chosen
b. Each snake bit behind the head must be incremented by 10 pixels in the
direction that the snake’s head was facing on a previous move (with the move
number corresponding to the snake bit's distance from the head, such that the
snake’s body will follow the path of the head)
o It must be determined with each maovement whether the snake's head collides
inta its body, in which case the game should end
d. It must be determined with each movement whether the snake's head collides
inta the borders of the game screen, in which case the game should end
e It must be determined with each movernent whether the snake’s head collides
inta a food ivam, in which case the a the food item will be randomby moved to
another position on the game screen

—Fm os AN

20 of 125 GCE Computing

Page | 18

f. The system must record the amount of food items eaten, and increment the
level number every time 5 food items are eaten

g The time intervals between each movement of the snake must be decreased by
10 milliseconds every time the level number is increased

h, At each new level the length of the snake must be increased by & bits

4} Dutput requirements

a, The current level number will be displayed

b. The positions of each snake bit will be displayed in real time

c. The position of the food item will be displayed

d. Instructions on how to select a level and play the game will be displayed on the
initial lewel selection screen

Hardware and Software Requirements

The system will be written using Visual Basic 6.0, and so as a guide the hardware and software

] reguirements of the system shauld be similar to those necessary to run Visual Basic 6.0, together
with hard disk space to store the game itssif. | have obtained the minimum requirements needed to
run Visual Basic 6.0 from the Microsoft website. The additional hardware reguirements of the game
will be: & keyboard to be used to control the direction that the snake's head is facing, a mouse fo
select the level and additional hard disk space Lo store the snake game itself.

Software Requirements Justificatian B 1
Microsoft Windows 95 or later operating system | An operating system reguired to run Visual Basic
&
Visual Basic 6 DLLs Software required to run the Snake game]
Hardware Requirements Justification |
PC with a ABGDN/66-MHz or higher processor finimurm processing power needed to run Yisual
Basic &
16 B of RAM for Windows 95 (32 MEB Minimum RAR neaded to run Visual Basic 6
\ recommended)) 1
) 10 MB of hard disk space Should be sufficient to store snake game
VYGA or higher-resolution monitor; Super VGA Needed to display output from the game
recommended)
Microsoft Mouse or compatible pointing device Needed for user to select level
Computer Keyboard Meeded for user to give an Input In order to
change the diraction that the snake’s head is
facing

Usar review of requirements

Al saven of my users have reviewed and agreed to the above requirements.

sgedt oo (D 00 T, %W KEM%

lowise Lord % Mﬁ’%/

GCE Computing 21 of 125

_Page |16

Section 2 -Design -Nature of the sclution

Design objectives

The design objectives are similar to the requirements previously specified. However, as a design
consideration | have decided that the best way to display instructions on how to play the game
would be in a new farm that is made visible when a command button on the initial level selection
screen s clicked, so that the initial screen is not cluttered with text,

To demanstrate this to my users and get their feedback on interface specifics such as these, |
shall design the interfaces, display them in turn to my users and conduct a series of further
interviews on each of my seven users with regards to the interfaces.

In addition, if the time interval between each snake movemant is to be 100 milliseconds at
level 1 and the time interval is to be decreased by 10 milliseconds every time the level number is
increased then the time interval cannot decrease in this way beyond level 10, Therefore, asa
processing consideration | have determined that the time interval should not decrease beyond leval

10. 1 have discussed and agreéed this consideration with all 7 members of my user graup; their
signatures are below the ohjectives,

1] Aesthetic considerations
The screen size will be large — (300800 pixels)
The colour of the snake will be: green
The calour of the food will be: pink
The calour of the background will be: black
Each 'bit" of the snake will be 1010 pixels in size
The snake should start at & length of thirty ‘bits’ on level 1
The snake’s head should inttially be facing right
Each food iterm will be 10x10 pixels in size
The time interval between each snake movement at level 1 will be 100
milltiseconds
J. There s no pre-defined limit on the number of levels to be played through
{instead this Is limited by the skill of the player)
2} Input considerations
a. The player will be able to choose the level at which he/she beagins the game
fram (between 1 and 10) with the use of a drop down list and combo box
b. The player will be able to control the direction that the head is facing with the
use of the directional keys on a keyboard
¢. The player will not be able to make the snake go back on itsalf by pressing left
when the head is facing right, or up when the head is facing down etc.
d. The player will be able to view an instructions screen that opens in a new form
by clicking a command button that is on the initial menu screen
e. The player will be able to go back to the Initial level selection screen from the
instructions screen with the use of a commiand button

oa

T Fm &m0 oo

22 of 125 GCE Computing

Page |17

3} Processing considerations

h,

The coardinates of the snake’s head will be continually incremented by 10
pixels in the direction that the snake's head is facing at a time Interval that is
determined by the level chosen

Each snake bit behind the head will be Incremented by 10 plxels in the direction
that the snake's head was facing on a previous meve {with the move number
corresponding to the snake bit's distance from the head, such that the snake’s
bady will fallow the path of the head)

It must be determined with each movement whether the snake's head collides
inta its body, in which case an errar message should be produced and the game
should end

It must be determined with each movement whether the snake’s head collides
into the borders of the game screen, in which ease an error message should be
produced and the game should end

It must be determined with each movement whather the snake’s head collides
into a food item, in which case the a the food item will be randomly moved to
another position on the game screen

The system must record the amount of food Items eaten, and increment the
level number every time 5 food items are eaten

U to and including the transitien to level 10, the time intervals between aach
movement of the snake must be decreased by 10 milliseconds every time the
level number is increasad. This will be done using & timer to control the snake
movemeants.

At each new level the length of the snake must be increased by 6 bits

4) Qutput considerations

.

b
£
d

The current level number will be displayed

The pasitions of each snake bit will be displayed in real time

The position of the food item will be displayed

Instructions an how to select a level be displayed on the initial level selection
SCreen

Instructlons on how to play the game will be displayed in a new form when the
instructlons command button fs clicked

Liser review of objectives

All seven of my users have reviewed and agreed to the above objectives.

Signexd:

%-ww

houtse, Lo, W
R

GCE Computing

rass Sob e Kbl Dbt

23 of 125

Interface Design 1: Level Selection Screen

The initial level selection screen will be vsing a form named frmSnake.
The table below lists the properties of the objects particular to this screen,

Object Praperty Satting
frmsnake BackColour EHOOOO0000& [Black)
MaxButton False
Caption Snake|
frminstructions Visible Falss
cmidPlay Caption PLAY
cmblevel List 1=10
Iblinstructionsl Caption Ta play, select a level
from the drop-down box
and click the PLAY
buttanl
ForeColor &HEBOCODOOCE (White)
Font Sans Serif size 12
Iblnstructions2 Caption Far in‘r’nrmatin.;r-n-n:;n_ ;u-.-__
to play SMAKE, click the
instructions button
ForeCalor EHB000000ER (White)
Font Sans Serif size 12
cmidinstructions Caption INSTRUCTIONS

24 of 125

_Page |18

GCE Computing

(Suawaaow

5, 9EUS S} |0NucD O)

pasn 2q i Jey) JStu @yl 5l
S{BUSIADNILLY) USSOLD |38
ayy 01 Fupuodsariod an|ea

£ 0 |EADIUI B EUSIAD NI
Jo anpea

al 5185 pue sadew ayeus jo
juncLie ayeudosdde syl 2|qisia
SBYEL PUE SpE0| ST quD
up Jahe|d syl Ag paja3as
anjea 3yl 0] 3N|EA |aAE| S
5138 "asel 0] umoys 5333000
IB jo Apadosd 2|QHSIA AR 5188
SIfL panya|ja uaym—AB|d D
PR WOYING el

SUOIINIYSU||G] PIWEL [3GE]

uanos
swel 341 yo stapiog
20 01 panadsad ase jeym
A3 JOULETD IS0 Y
JEUL 0% 3G esn Jou uogng
BSIWKEL BJoyasay] ‘el
51 UDNGNERY T BUGLALY

6il .wmm_m ..

aseg 01 ayeusLUY 0 Auadosd 2(qisia ai)
pue 3nJ| 0] suojpangsujuuy jo Apadosd 3)gisw syl sias syl
PENIIS USLM—SUDTIINIISUFALD PR UORNG pUewwo’)

—

UR3JIS§ UOIIB|AS [3AT

_ 7SUOJNSU| Q] PEWEL (2T

ayeus ayl jo psua
pue paads Sa1EIP SN[EA [AA3] IY,

“panane 5| ARldpu;

wayen Indug 5§ paga)as anjes ay
‘aued ay) wilag og ysim Aayl YA
18 [ana] U] 13|85 01 JAsn SU SMo)
— [SALED PIBL 00 Oguio;

saxog ainixd jo pasodwc
pooj pue SyeUs JIow 030 VN

25 of 125

GCE Computing

Page |20
Level selection screen interview

5o that a discussion can take place that resubts in agreement between my wsers, | shall conduct
group interviews with all seven of my users present to ascertain the particulars of my interface
design,
These are the questions that | intend to ask:
¢ What changes (if any) do you feel should be made to the look of the level selection screen?
s What changes (if any) do you feel should be made to the functionality of the level selection
screen (eg. with regards to command buttons and instructions)?
After each response, | shall add any further questions that | raised underlined below the response,
The Interview took place in front of a computer where | could alter the appearance of the interfaces
during the interview to get further feadback. The final screen agreed upon is shown below,

What changes (if any] do vou feel should be made to the |ook of the level selection screen?

& |t istoo dark — a dark grey colour would be better suited to the menu screens

colour?

& Yes
What changes [if fi I j i 1
(e.g. with regards to command butkons and instructions)?

* MNone '

26 of 125 GCE Computing

Reyised row of frmSnake property table:

Page |21

Object Property Setting
fl'ITIS-I'IE;l;E BackColour £ HOOR0B080& (Dark Grey)

Interface Design 2: Instructions Screen

The instructions screen will be made using a form named frminstructions.
The table below lists the properties of the objects particular to this screan.

Object Property tir
fromInstructions Visible Trua |
') BackColour &HOOZ0B080& (Dark Grey)
Caption Instructions
frmSnake Visible False
cmdBack Caption Back
IblInstructions3 Caption Instructions
ForeColor EH2000000EL, (White)
Font Sans Serif size 20
) Iblinstructionsd Caption Seloct 3 difficuty faval from tha drep-

e Bos g ek the PLAY button to
b gin thi gamee.

The difficulty leval detarminas the speed
atwhich your snake moves, and the
lergth atwhich It slars
Control the mosvermient of the 8 nak's
head using the direcklonal arroas, and
s by will Tollorar the path of the bead.
The cltipess Uiva o tha gamye 15 to progress
hrenigh ag many levals as possinle, by
direciing the snake’s head onto food
Iteens that will appeze s pink blocks on
the screen
Every fun Tood [ems saten wik Incrawss
the level nurskear jdisplayad at the fog of
Ak i soraan, thus increasing the
smakn’s speed and length,

Tha gama will end If the erske’s head
codlides with it own body ar witk the
borders of thi gl foedan.

SEE WHAT LEVEL CAN YOU REACH|

GO0 LICKI

GCE Computing

27 of 125

28 of 125

Object Eroperty setting
Iblinstructionsd ForeCalor EHB000000ES (White)
IiHinstructions4 Font Sans Serif size 12
crmdBack Caption BACK B

Page |22

GCE Computing

and) 01 DY EUSLLY

Jo Auadosd g sy

PUE S5]84 O SUORINJISU| LY
yo Apdoud 3|qisia) S335
41 pEYHD Uy M—Y IR LD
PELUEL UOING pUE Wy

FEUORINUISULG) peUEU [BQE]

SNOILDNHLSNI saxoq amod o pesodwo
pODL PUE 3YEUS H20W '030) TAVNS

£SUOIINASY]G| PRLIEY (G2

afeqd .
£2 | d - U2addg SUoaNsuy| A~

29 of 125

GCE Computing

30 of 125

Page |24

Instruction screen interview

The final screen agreed upon s shown below,

What changes {if any} do you feel should be made to the logk of the level selection screen?
+ HMNone

What changes [If any) do you feel should be made to the functionality of the level selection screeny

* There should be an ability to select a level and play the game without having to return to the

previous screen

Additional rows of property table for feminstructions

Ohiject Property Setting
crdPlay Caption PLAY
cmblevel List 1--10

INSTRUCTIONS

Sedect a oy levs! Troim the drop Ay

Thee il Faeailiy |oove

Thre garme will end if the snakea's

SEE WHAT

GCE Computing

Interface Design 3: Gameplay Screen

The gameplay screen also uses the form frmSnake. The below table lists the objects on this screen

and thelr particular properties.
Iﬂh'eg[| Proper Setting
frmSnake BackColour & HOODODOO0E, (Black)
MawButton False
Caption Snakel
frrninstructions Vislble False
imgSnake Backcolowr SHO000CO00E: (Green)
[blLevel Caption “LEVEL : " & lovel

GCE Computing

_ Page | 25

31 0of 125

Jwed 3y} Jo siaplog 24yt
2 o} panaad ale Jeym
13)|2 1OUUED JBEN 3yl
JEY} OS SjgEsn 10U Uojng
BSILUIKEIL 3.0) 20311 "85 By
1 UOJIMGNER I EUSLLL

9z| a8eqd

pOO4BLN pawey Xog
awmod g Ag pajuasadau sway poog

uaats fAejdawes

~

ayeusHLL PIEL Sa%00
asmyoid jo Azie ue Jo dn SpeLL 3YEUS

[42qunu j343) Bululeluod SjgeUEA]

B o - TIATT, 2 (I Y2 40
Ayadoud vondes gl jana)q) paLieu
|2QE] B wi paAE|HSIp JBgUInU [Bna]

GCE Computing

32 of 125

FPage |27

Gameplay screen interview

do you feel showl made to the |ook of the gameplay soreen?

* MNone
What changes [if any} do you feel should be made to the functignality of the gameplay screen?
* Mone

Error message design

A simple error message, as follows, will be displayed when the snake collides with its own body or
with the borders of the game screen.

Amendments to design objectives

In light of the user feedback obtained on the interface designs, the initial design objectives have
been slightly modified. The altered and new sections are highlighted. All seven users have again read
and agreed these objectives,

1) Aesthetic considerations
a. The screen size will be large ~ (900900 pixels)
b. The colour of the snake will be: green
¢, The colour of the food will be; pink

f. Eath ’b|t ﬂf the snakE will be mxm pixels In size

g The snake should start at a length of thirty ‘bits’ on level 1

h. The snake's head should initially be facing right

I. Each food iterm will be 10x10 phiels in size

J. The time interval between each snake movement at level 1 will be 100
milliseconds

k. There is no pre-defined limit on the number of levels to be played through
{instead this is limited by the skill of the player)

GCE Computing 33 of 125

Page |28

2) lnput mnsldemtlnns

b. T'he player wlII be able to n:n:ntml the duren:mrl 1.ha.t the hEali is facing with the
use of the directional keys on a keyboard

¢. The player will not be able to make the snake go back on itself by pressing left
when the head is facing right, or up when the head is facing down etc,

d. The player will be able to view an instructions screen that opens in a new form
by clicking a command button that is on the initial menu screen

g. The player will be able to go back to the initial level selection screen from the
instructions screen with the use of a command button

3) Processing considerations

a. The coordinates of the snake's head will be continually incremented by 10
pixels in the direction that the snake’s head is facing at a time interval that is
determined by the level chosen

b. Each snake bit behind the head will be incremented by 10 pixels in the direction
that the smake’s head was facing on a previous mave (with the move number
corresponding to the snake bit's distance from the head, such that the snake's
body will follow the path of the head)

c. It must be determined with each movement whether the snake's head collides
inta its body, in which case an error message should be produced and the game
should end

d. It must be determined with sach movement whether the snake's head collides
into the barders of the game screen, in which case an error message should be
produced and the game should end

e, It must be detarmined with each movement whether the snake's head collides
into a food itern, inwhich case the a the food item will be randomly moved to
another pasition on the game screen

I f. The system must record the amount of food iterns eaten, and increment the
level number every time 5 food items are eaten

g. Uptoand including the transition to level 10, the time intervals between each
maovemeant of the snake must be decreasad by 10 milliseconds every time the
level number Is increased. This will be done using & timer to control the snake
MIOVEMents.

h. At each new level the length of the snake must be increased by 6 bits

4) Output considerations

a. The current level number will be displayed

b. The positions of 2ach snake bit will be displayed in real time

€. The position of the food item will be displayed

d. Instructions an how 1o select a level be displayed on the Initial level selection
screen

e. Instructions on how to play the game will be displayed in a new form when the
instructions command button is clicked

34 of 125 GCE Computing

Page |29

User review of objectives

All seven of my users have reviewed and agreed Lo the above objectives.
. _ _
Sened: Gl T hukes seb ;?Lfaé\ KMMM

icelod, Al Fleeps

GCE Computing 35 of 125

TaEa
sEraf pool g

Lrana Tasd| pool

FHATI AT anelg

. f
|

| |
) SyEs S[res IsqUnT [aaa] || JAqUENT [Ra9] Jiq SopEus passaxd s1U0Nq
.u_.ﬁnv.u”aaﬁ._w””. g A 124a] o3 m..nnm.m.._.uou a1 m.ﬂ.._umu.u_OU L i) &B ._..ﬂ.ﬂ_u.ﬂ.uu.n._._u_ g .m-.mn_.ﬂ o 30 .pm_nn._..n-ﬂ
uu.iu.m netsmon | mowsmpen || SEISEQ |l -sesemsjo || -sawEmsje || wo paserd pocg 2023 || oy Bmpaosoe Sm | umed aqy smoqroy || 541 momoazp o
. waRq || waag | 4| 98w P pasdsisnipy || 3951 PO || grmopuey | | o 51 pray s apeos | e os dpoq || w spaid o] pReY
— ry 3] amsug worpanRp sy § ATEUS AR0T] § 30Eus A80T
_" L F 1
i & 511 aEUS | | DA(qESIE PUE S]qLEAM
_ Haeq an) _ oA notpsod spalqo BoIalas [3aa]
B L ua”.ﬂw pUT PR | | PUE STOHILIITT SER]
.
STOIST02 waysds pocy sassasdian s Ty Taamg amed
Hiio] STOTINIST] Sumasac] e 23eg guomE] Funacpy € SunsaEs Fudeyday
L 4 ﬂ * 3 ~ F Y
suonsnsm Smlepdsq awed a Bmarig dn ymys smeD |
f ! _
e -

0g a8ed

WEIFEIN 2NIJNLS — 2¥eUS 10 UsSISar JEINROIA

GCE Computing

36 of 125

Data Structure Design

FPage |31

Mo files will be created or used by the Snake program, however the program will, of course, make

use of variables, The data type “SnakeBit' is a user defined type that will be defined in a public

madule named mdlSnake.
SnakeBit consists of the following variables:

| variable Name | Type Size (range of possible | Description | Sample Validation
values) | Walue
Direction Byte 1-4 Cantains the ' 2 1
direction that an
individual snake
bit is facing (1=
down, 2 = right,
3= up, 4 = |&ft)
X Long =10 - 900 Contalns the X 20 If ¥ == 900
co-ordinate of | arX=0
the left of an then the
individual snaks game ends
bit {in pixels)
¥ Long =140 - 900 Contains the Y GO0 [TY ==1200
co-ordinate of ar¥=0
the top of an then the
individual snaka game ends
bit {in pixels)
Below are the descriptions of the varlables that are to be used by the program:
Varlable Name Type Size (for numeric lypes this is _Descrlptil:ln Sample Value | Validation
the range of possible values,
for alphanumeric types this v]
i is the length of the string)
| snake{0 to 9999) | SnakeBit | Different for each of Storesthe X and ¥ | Different for See above
| snake(n).Direction, values, and each of
snake(n}X and snake(n).¥ = | direction facing far | snake(n).Diract
see abowe each snake bit ion, snakein).X
and snake{n).y
—see above
level ! Byte 1-255 Stores the value of | 12 M
the level selected
{this determines
the length of the
smake and of timer
L) intervals)
valid Boolean | O{FALSE) - 1(TRLE) Used to flag up ifa | 1{TRUE) Ma
food item is to ba
placed ontop ofa
snake it 5o that
this can be avoided |
Wariable Name Type Slze (for numeric types thisis | Description Sample Value | Validation
| the range of possible values,

GCE Computing

37 of 125

Page |32

| for alphanumeric types this
Is the length of the string)
length ' integer | 0-9999 Stores the length of | 22 MA
the snake and Is
equal to the
nuimber of snake
bits minus 1)
foodTop Single 0-830 Contains the ¥ co- | 500 FoodTop and
ordinate of the top foodLeft
of a foed item (in cannot have
| plxels) the same
values as the ¥
and ¥ values
respectively of
any snake bit
‘(because then
} the food would
be placed on
top of the
snake)
foodLeft Single 0 =820 Contains the X eo- | 490 Same as
ordinate of the laft validation for
of a food ftem (in foodTop
pxels) B
facingl-84 To Byte 1-4 Stores the direction | 3 NA
999999} the head was
facing (the value
stored) on a
particular move
[the index)) .
moves Lang 0 - 559999 Stores amount of 8BB3 MA
tirmes the timer is
) called
JeeyPressed Single | 1-145 Stores the keyeode | 37 MA
' value of any button
that is pressed
foodCount Byte 0-4 Stores how many 2 M
food items are
gaten, up to every
Sth Item eaten
38 of 125

GCE Computing

Page |33

Test strategy — Test plan

In the testing of Snake, | shall first perform white-box testing In the form of dry runs to be carried
aut on the design algarithms on page 37, Secondly, | shall perform black-box testing on the finished
program, using the test plan autlined below, and respond accordingly to any issues that present
themselves, Finally | shall have my user group test the pragram and give feedback, which may result
in the modification of the program.

The Snake program does not lend itself to the input of "extreme’ data, except perhaps when
the snake traverses the very edges of the game screen. This shall be tested by confirming that the
game ends the instont the snake goes beyond the borders of the game sereen, and not before. Each
test shall be evidenced with screenshaots,

| Function being tested Method of input Input Expected result
Leve] selection Test 1: Combo-box 1 Snake length: 30 bits
{cmblevel) and long
cammand button Snake facing: right
(emdLevel) an menu Timer interval: 100
SCrEEn milliseconds
Test 2: Combo box lblLavel caption: “LEVEL:
{cmblLevel) and i} 1"
cammand button 2 Snake length: 36 hits
{cmdLevel) on long
instructions screen Snake facing: right
Timer interval: S0
milliseconds
IbiLevel caption: “LEVEL:
z#
3 Snake length: 42 bits
long

Snake facing: right
Timer interval: 0
milliseconds

|blLevel caption: "LEVEL:
3

a) Snake length: 48 bits
long

] Snake facing: right
Tirer Interval: 70
milliseconds

[biLevel caption; “LEVEL:
4

£ Snake length: 54 bits
long

Snake facing: right
Tirmer interval: 60
milliseconds

IblLevel caption: "LEVEL:
5

GCE Computing 39 of 125

Lewvel selection

Test 1: Combo-box
{cmbLevel) and
command-button
{cmidLevel) on menu
sCreen

Test 2: Combo box
{emibLevel) and
command button
{cmdLevel) on
instructions screen

Snake length: 60 bits long
Snake facing: rlﬁta ge |34

L Timer interval:

mmilllseconds
IblLeval caption: “LEVEL: 6%

Snake length: 66 bits long
Snake facing: right

Timer interval: 40
imillseconds

IblLevel caption: “LEVEL: 77

Snake length: 72 bits long
Snake facing: right

Tirner Interval: 30
milliszconds

IblLevel caption: "LEVEL: 8°

Snake length: 78 bits long
Snake facing: right

Timer interval: 20
millliseconds

IblLewve! caption: "LEVEL: &

10

Snake length: 84 bits long
Snake facing: right

Timer interval: 10
milliseconds

lolLevel caption: “LEVEL:
1

' Movement of snake

When In a game,
pressing a directional
button on the
keyvboard

Up (when head is
facing right or left}

Snake’s head will face and
therefore move upwards,
and each trailing snake bit
will move ta follow the path
of the head every time the
timer is called

Right {when head
is facing up or
down)

Snake’s head will face and
therefore move right, and
gach trailing snake bit will
move to follow the path of
the head svery timea the
timer s called

Do i[;.-.rhen head
is facing right or
left)

Snake's head will face and
therefore move down, and
each tralling snake bit will
meve 1o follow the path of
the head overy time the
tirmer is called

Left {when head is
facing up or down)

Snake's head will face and
therefore move left, and
each tralling snake bit will
move to follow the path of
the head every time the
timer is called

Up (when head is
facing up or down)

40 of 125

Mo change

GCE Computing

Function being tested

Method of input

FPage |35

Down, to direct
snake’s head into
bottom border of
game screen

Left, to direct
sniake’s head inta
left border of
game sCreen

j[§7+17]4 | EipE:ted resull
Movernent of snake When ina game, Right (when head | Mo change
pressing a directional | is facing right or
button on the left)
keyboard Down (when head | Mo change

s facing up or

down)

Left (when head is | Mo change

facing right or left)

Menea Coordinates of snake's head
are continually incremented
by 10 pixels in the direction
that the snake's head is
facing and each trailing
snake bit moves to follow
the path of the head every
time the timer is callad

Callision with walls When in a game, Up, to direct
| directing snake's snake's head into
head into & barder of | top border of
the game screen BAME SCreen
using directional Right, to direck The instant the snake’s
buttons on the snake's head into | head goes bayond the
keyvboard right border of border of the game screen,
Barme scresn an error message is

produced and the game
ends, returning to the initial
menu screen

“Collision with own body

When in a game,
directing snake's
head into its own

Directional buttans
an keyboard used
to direct snake's

The instant the snake's
head has the same
coordinates as any one of

no level advancement)

directing snake's
head into a food
ibem using

on keyboard used
to direct snake’s
head into a food

body using head its trailing snake bits, an
directional buttons error message Is produced
on the keyboard and the game ends,
returning to the initial menu
SCreen
Collision with food (with | When in a game, Directional buttons | Food item randomly moved

to another position on the
game screen (that is not
currently accupied by a

directional buttons Itemm {excluding snake bit)
on the keyboard every fifth food
item eaten)

GCE Computing

41 of 125

F'.age]Z«!B

Function being tested

Method of input

Expected result

Input
Collision with food (with | When in a game, Snake directed
level advancement]) directing snake's onta & food item
head into a food when foodCount =
itern using 4, and level
directional buttons number is <= 10
an the keyboard

Food item randomly moved
to another position on the
game screen (that is not
currently accupled by a
snake bit); Snake length:
increased by 6 bits; Timer
interval controlling snake
speed: decreased by 10
rlilizeconds; IblLevel
caption: “LEVEL: [level]”

Snake directed
anto a food item
when foodCount =
4, and level
number is = 10

Food itern randomly moved
to another position on the
game screen {that is not
currently cocupied by a
snake bit}l; Snake length:
Increased by 6 bits; IbiLevel
caption: “LEVEL: [level]”

Mo change to timer interval |

Unlimited level
advancement

Displaying instructions

Returning to initial
meznu screen from the
instructions screen

Disable collision Py Up to and including level
detection with own 10, the interval of the timer
body or borders of controlling the snake's
game screen, then speed will be decreased by
continually advance 10 at every now level and
through levels up to snake length will be
leve! 50 increased by 6 bits;
Beyoid level 10, the timer
interval will remain at 10
millliseconds, and at avery
new level the snake length
will be increased by 6 bits
Clicking the ' i Displays instructions screen
instructions button by setting the visikle
{cmdInstructions) on property of frrminstructions
the menu screen to True and the visible
property of frmSnake to
False
Clicking the back NA Returns to initial menu
button {cmdBack) on screen by setting the visible

the instructions
SCreen

property of frminstructions
to False and the visible
property of frmSnake to
True

Al saven members of my user group have seen and agreed to the above test strategy and modular

design structure diagram.

signed:

Gots Tt Sobagatn KTl P

e o

42 of 125

GCE Computing

Fage |E|-'.-'

Algorithms & Testing

The snake program will reguire several algorithms within various modules, The module names ars
written below in italics (these can be seen to correspand with the madules specified in the structure
diagram on page 30} and the algorithms in each module are bulleted below them. | shall describe
each algorithm in turn using pseudo-code.

In order to test each algorithm for functionality, | have performed dry runs of each algorithm
that is more complex than a simple sequence - the results of which are disptayed below the
algorithm.

1) Game start up
o Make instructions and level selection objects imvisible and disabled
o Load and position snake bits
2) Placing faod
o Randomly place foed and ensure that food isn't placed on top of a snake bit
3] Detecting keypresses
o Adjust direction snake's head is facing according to which directional button is
pressed, but not allowing the snake to go back on itself
4) Detecting colfisions
o Detect collision with walls
o Detect collision with snake
o Display initial menu screen if collision with walls or snake is detected
o Detect collision with food, place new food and level up If necessary
5) Moving snake
o Move snake’s body 50 that it follows the path of the head
o Niove snake’s head 10 pixels in the direction it's facing and store the move number
on which the snake's head is fecing a particular direction

GCE Computing

43 of 125

1) Game start up

Make Instructions and level selectlon objects invisible and disabled
This Is written as 2 simple sequence, as part the start-up subroutine called StartGame]

Make |blinstructions invisible

ivake cmdLevel invisible
Make cmbLevel invisible

Make cmdinstructions invisible

Disahle crndLevel
Disable cmblLevel
Disable cmdinstructions

Change back colour of frmSnake to black

Page |38

Load and positicn snake bits

is should load and positi ropriate amount of snake bits a the level that is
splected, assuming that th snake bits loaded by default, It should also ensure that all
loaded snake bits are facing right, and it also sets the corresponding X and ¥ values of the associated
snake variable accordingly. This will also be part of the starf up subroutine called StartGame. |

01 length =30+ ([level - 1) * &)
02 FORk=0TO (length-1)
IFk = 4 THEN Load imgSnake(k)

Top value of imgSnake(k) = 300

Laft value of imgSnakelk) = 300 - (10 * k)

03

04 Make imgSnake(k) visible
05

06 snake(k).¥ = 300

a7

08 snake(k).X = 300 - (10 * k}
09 snake{k).Direction = 2

10 MNEXTk

For the following dry run | shall have the level set to 3 and shall end the dry run after 2 successful
runs of lines 02 to 10, as this should adeguately test the algorithm,

Lines level | length k '['snakeu.'f snake(}.X snake().direction | Output Carnment
01 3 42 | '
02 0
03 ' FALSE, go
o line 04
04 imgsnake (0]
becomes
_ visible i
05 imgsnake|0)
gets assigned a
top value of ‘
| 300
06 snake{0).Y J
B =300
44 of 125

GCE Computing

Page |39

07 ImgSnake(0)

gets a left

value of 300
08 snake(0].X

= 300
09 smake|l.direction
=2
10, 02
03 FALSE, go
to line 04

04 imgsnaka(1)

becomes

N visible

05 imgsnake(1)

gets assigned a

top value of

300
06 gnake(1).¥
.- . = 3':]']_ . — -
a7 imgsnake({1}

gets a left

value of 290
a8 snake(1).X

=290
09 snake(1).direction
=2
10,02
GCE Computing 45 of 125

2) Placing food

Randomby places food and ensures that food isn't placed on top of a snake bt

(This will ke written in a subroutine called PlaceFood

o1
02
03
04
05
06
07
08
09
3) 10
11
12
13
14
15

In order to perform a dry run that fully tests this algorithm, | shall write one trace table where the
arbitrarily chosen ‘random’ numbers that dictate the food's coordinates are such that they would

Do

Randomize the random function
walid = TRUE

foodTop = The integer value of (a random number * 83) * 10
foodLeft = The integer value of (3 random number * 83) * 10

FOR k = 0TO {length - 1}

IF foodTop =Top value of snake(k).Y AND foodLeft = Left value of Snake(k).X THEN

walld = FALSE
Exit the for...next loop
EMD IF

MEXT k

LOOP UNTIL valid = TRUE

hake imgFood Visible

Make top value of imgFood = foodTop
Make left value of imgFood = foodLeft

Page | 40

cause the food to be placed on top of a snake bit represented by ImgSnake(1), and one where there
is no such issue. In both tables, | shall assume that the snake is at starting position and thatitisata
length of 5 bits.

Lines valid arbitrarily | foodTop | foodleft snake{k).Y | smake(k).X | Output Comment
chosen
randafm
number
01, 02 Random
function is
randemized
03 TRUE Initialises
valid
04 0337956 | 300
4
05 0328333 290
3
06
o7 300 300 FALSE, go to
line 10
10, 11, 06
a7 200 290 TRUE, go to
line 08
0g FALSE
08, 12, 01, | Random
46 of 125

GCE Computing

Page |41

02 function is
randomized
03 TRUE
04 0.666221 | 590
05 0.442133 390
06 0
oy 300 300 FALSE, go to
line 10
10,11, 06 1
o7 300 250 False, go to
lime 10
10,11, 06 2
o7 oo 280 False, go to
line 10)_
10, 11, 06 3 h
o7 300 270 False, go to
line 10
10,11, 06 4
o7 300 2&0 False, go to
line 10
10,11, 12
13 imgFood
becarnes
visible
14,15 imgFood is
moved to the
coordinates
foodTop [X]
and foodLeft L
[¥])
Lines valid | arbitrarily | foodTop | foodleft | k| smake(k)Y | snake(khX | Output Comment
chosen
randorm
number
01,02 Randam
function is
randomized
0z TRUE Initialises
wvalid
04 0.293439 | 260
0s 0.583453 510
o0& 1]
o7 200 300 FALSE, go to
line 10
10, 11, 06 1
o7 300 250 False, go to
line 10

GCE Computing 47 of 125

Page | 42

10, 11, 06 2 B
o7 300 280 False, go to
lineid
10, 11, 06 i
o7 ' 00 270 False, go to
_ line 10
10, 11,06 4
o7 300 260 False, go tc
lire 10
10, 11, 12
13 imgFood
becomes
visible
14, 15 imgFoed is
~' moved to the
' coordinates
foodTop [X]
and foodLeft
| [Y]
3) Detecting keypresses
Adijust direction snake’s head Is facing according to which directional button js pressed, but not

48 of 125

allowing the snake to go back on jtself

[This will be written in a subroutine that is called when a key is pressed on the kayboard. | shall use

the key down event for forms in visual basic.]

keyPressed = Key code value of the button pressed

SELECT CASE keyPressed
CASE [Key code for left directional bitton)

IF snake(0).Direction = 1 OR snake|0).Directlon = 3 THEN snake(0).Direction = 4

CASE [Key code for up directional button]

IF snake|0).Direction = 2 OR snake(0).Direction = 4 THEN snake(0}.Direction = 3

CASE [Key code for right directional button]

IF snakel0).Direction = 1 OR snake|0).Direction = 3 THEN snake(0).Direction = 2

CASE [Key code for down directional button)

IF snake{0),Direction = 2 OR snake|0).Direction = 4 THEN snake{0).Direction =1

END SELECT

GCE Computing

Page |43

4) Detecting collisions

Detect collishon with walls
[This will be written in a subroutine called CheckWallCollision)

IF smake|d).X »>= 900 OK snake(0).X < 0 OR snake(0).Y >= 500 OR snake(0).¥ < 0 THEN
Disable tmrivioveSnake
QUTPUT Error message
FOR i =070 (length = 1)
Make imgSnake(i] invisible
MNEXTI
CALL EndGame Subroutine
END IF

Detect collision with snake
{This will be written In a subroutine called CheckSnakeCollision)

FOR k =1 To {length - 1)
IF snake(0).¥ = snake(k}.Y¥ AMD snake(0).X = snake(k).X THEN
Disable trnriovesSnake
OUTPUT Error message
FOR | = 0 TO (length - 1)
Make imgsnake(i) invisible
MEXT i
CALL EndGame Subroutine
End If
MEXT k

Display Initial menu screen if collision with walls ar snake Is detected
{This will be written in a subrouting called EndGamae)

Change background colour of frmSnake to dark grey
Make imgFood invisible
Make Iblinstructions visible
Make Iblinstructions2 visible
Make crmdLevel visible

Make crmbLevel visible
Enable crdLevel

Enable cmbLevel

Make cmdinstructions visible
Enable crndinstructions
Make lbiLevel invisible

GCE Computing 49 of 125

Page |44

Detect collislon with food, place new food and level up if necessary, Set the position and direction of
new bits added sg that they correspond with the snake’s final bit,

(This will ingrease level, snake length and snake speed if appropriate. It will be writtenin a
subrouting called CheckFoodCollision.)

IF snake(0).¥ = foodTop And snake[0).X = foodLeft THEN
IF foodCount <> 4 THEM
foodCount = foodCount + 1
ELSE
foodCount = 0
level = lavel + 1
Sot the caption of IblLevel to "LEVEL: [value stored in level]”
IF level <= 10 THEN Make the interval of tmrMoveSnake = 110 - {level * 10)
FOR k = length TO {length + 5)
Load imgSnake{k)
make imgsnake(k) Visible
SELECT CASE snake(length - 1).Direction
CASE1
Top value of imgSnake(k) = snake(k - 1).Y - 10
snake(k).Y = Top value of imgSnake(k)
Left Value of imgSnake(k] = (snake(k - 1).X)
snakelk).X = imgSnake(k).Left
snake(k).Direction = 1
facing[maoves - k) = snake(k].Direction
CASE 2
Top value of imgSnake(k) = (snake(k - 1).Y)
snake(k).Y = imgSnake(k) Top
Left Value of imgSnake(k) = snake(k - 1).X - 10
snake(k).X = imgsnake(k).Left
snake(k).Direction = 2
facing|moves - k) = snake{k).Direction
CASE 3
Top value of imgSnake(k) = (snake(k - 1).¥} + 10
snakelk).Y = imgSnakelk).Top
Left Value of imgSnake(k] = snake(k - 1}.X
snake(k).X = imgSnake(k).Left
snake(k).Direction = 3
facing(mioves - k) = snake{k).Direction
CASE4
Top value of imgsnake(k) = snake(k - 1).¥
snake(k).Y = imgSnake(k).Tap
Left Value of iImgSnake(k) = (snakelk - 1).5 + 10)
snakelk).X = impgSnake{k).Left
snakelk).Direction=4
facing{mowves - k) = snakelk).Direction
EMD SELECT
MEKT k

50 of 125 GCE Computing

length = length + &
EMD IF
CALL PlaceFood Subroutine

EMND IF

5) Moving Snake

love snake”

50 that it follows the path of the head

Fage | 45

[Thiz moves the snake's body by 10 pivels sccording to the direction that the head was facing on the
move numberad (moves - number of snake bit}, It will be written In a subrouting that [s called at

each interval of tmrMoveSnake, named MoveSnakeBody]

m
02
03
04
05
0e
o
08
0z
10
11
12
13
14
15
15
17

FORi=1T0O (length - 1)
snake(i).Direction = facing{moves - i)
SELECT CASE snake(i).Direction

CASE1
snake(i)Y = snakelihy + 10

Top value of imgSnake(i) = snake(i).¥

CASE 2
snake(i}.X = snake(i).X + 10

Left value of imgsSnake(i) = snake(i) X

CASE 3
snakell).Y = snake{l).¥ - 10

Top value of imgsnake(i) = snake(i}.Y

CASE 4
snakeli}.X = smakeli).X - 10

Left value of imgSnake(i) = snake(i).X

END SELECT
MEXTi

Move snake’s head nixels in the direction
snake's head is facing a particular direction
(This will be written in 3 subroutine called MoveSnaksHead.

SELECT CASE snake(0).Direction

CASE1

snake(0).Y = snake{0).¥ + 10

Top value of imgSnake{0) = snakel0).Y
facing(moves) = 1

CASE 2

snake(0).X = snake(0).X + 10

Left value of imgSnake{0) = snake|0).x
facing{moves) =2

CASE 3

snake(0).Y = snake(0).Y - 10

Top value of imgSnake(0] = snake(0LY
facing|moves) = 3

GCE Computing

51 of 125

Page | 46

CASE4
snake{0).X = snake(0).X - 10
Left value of imgSnake(0) = snake{0).X
facing{moves) = 4
END SELECT

For the sake of clarity, | shall now describe the sequence In which the aforementioned subroutines
are called,

01} StartGame

02) PlaceFood

03) MoveSnake Body

4} MovesnakeHead

05} CheckwallCollision -If a wall collision Is detected then EndGame is called, returning the user

b to the inttial level sebection scraen. If notthen...

06) CheckSnakeCollision - If a snake collizion is detected then EndGame is called, retuming the
user to the initial level selection screen. If not then...

07) CheckFoodCollision ~ If a food collislon is detected then PlaceFood is called, and the cycle
continues fram there. IF not then MoveSnakeBody is called, and the cycle continues from
there.

If at any point a key is pressed then the Key Down event is executed after which MoveSnakeBody is
called, and the cycle continues from there.

52 of 125 GCE Computing

Page |47

Section 3 = Software development and testing

Part 1 — Software development.

The software development process can be broken down into several key stages, which | shall
descr|be in the order in which they were carried out - highlighting the problems that were
encountered along the way, and how they were resolved.

1) Begln writing StartGame subroutine and make basic interface

Firstly | made a basic user interface including the command button (cmdLevel) and list box
(emblevel) needed to select a level and play the game, five Image boxes in a control array namaed
imgSnake, and the timer used to control snake movement [tmriioveSnake). | then began writing

| the StartGame subroutine that is executed when cmdLevel is clicked, firstly by writing the code to
load the game screen, and then by writing the code that loads and positions the appropriate number
of snake bits, according to which level |s selected.

2) Write MoveSnakeHead subroutine and the subroutine for detecting key presses

At this point, alpha testing demonstrated that the snake's head was able to move around the screen

independently of its body, and it was possible to control the snake’s movement with the directional
arrows on the keyboard,

3) Write MoveSnakeBody subroutine

| wrote the MoveSnakeBody subrouting, and the snake's body did then follow the path of the head —
but it did so In an erratic manner, as can be seen below:

T
..ﬂ' I..‘

bt

GCE Computing 53 of 125

Page |48

In order to determine the cause of this error, | put & breakpoint at the beginning of the StartGame
subroutine and ran the program. After stepping throwgh the program, when | reached the timer call,
| discovered that the variable ‘moves’, that stores the amount of moves made by the snake’s head so
that the trailing bits can face the direction the head was facing on a particular mova, was not at the
correct starting value of 0. | then realised the cause of the error: the timer had been running since
the loading of the program. This was fixed by simply setting the default value of
tmriloveSnake Enabled to false, and changing it to true when cmdLevel is clicked with the line:
tmriioveSnake Enabled = True

4) Write PlaceFood subroutine

Food is now placed randomly on the game screen, and does not seem to be placed on top of a snake
bit.

5) Write CheckwallCollision and EndGame subroutines

The snake is no longer able to go beyond the borders of the game screen, and the appropriate error
message is displayed when it does so, and the inltial level selectlon screen is displayed.

6] Write CheckSnakeCollision subrouting

The smake can no longer travel through itself = upon collision, the appropriate error message and the
initial level selection screen are displayed.

At this point in development, alpha testing demonstrated that the snake’s body followed the
path of the head as desired, and &t most times it was not possible to make the snake go back on
itself = however, if two directional buttons were pressed within X milliseconds of each other (where
¥ = the interval of tmriMoveSnake at the level being played) then i was possible to make the snake
mave back on itsalf, thus losing the game. This prablem was fixed by changing the subroutine that
detects keypresses, as below;

Old code

keyPressed = KeyCode
Select Case keyPressed
Case 37
If snakel).Direction = 1 Or snake{0}.Direction = 3 Then snakel0).Direction = 4
Case 38
If snakel0).Direction = 2 Or snake({0).Birection = 4 Then snakel(0).Direction = 3
Case 39
If snakel0).Direction = 1 Or snake{0).Direction = 3 Then snake(0).Direction = 2
Case 40
If enake|0).Direction = 2 Or snake({0).Direction = 4 Then snakel{0).Direction = 1
End Salect

54 of 125 GCE Computing

FPape |49
Mew code

keyPressed = KeyCode

Select Case keyPressed
Case 37
IF snake{1}.Y <> snake(0).¥ Or snake(1L.Y <> snake(0).¥ Then snake(0).Direction = 4
Case 38
If smake(1). <= snake(0).X Or snake{1).X <> snake(0).X Then snake{0).Direction =3
Case 39
If snake(1).Y <> snake{0).Y Or snake(1).Y <> snake|0)LY Then snake{l).Direction = 2
Case 40

If smake(1).X <> snake{0).X Or snake(1).X <> snake(0).X Then snakel0).Direction = 1
End Select

7} Write CheckFoodCollision subroutine
At this point in development, it was possible to direct the snake onto food items, and to level up

after 5 food items were eaten — decreasing the timer interval and increasing the snake's length as
desired. However, the new snake bits added at each level acted erratically, as shown below,

]
[ENEEENE]

GCE Computing 55 of 125

_ Page |50

After inserting a break point at the beginning of the part of CheckFoodCallision that is concerned
with level progression and stepping through the program, | discovered that the cause of the peculiar
movement of new snake bits was due to the fact that they were having their directions altered by
the MovesnakeBody subrouting, instead of retaining the direction that the snake's tail was facing.

To owercome this, | needed to ensure that the new snake bits only had their directions
controlled by MoveSnakeBody after they had made their first movement. | did this by creating a
string variable named newBits, which stores the index of each new bit added at a level increase in
CheckFoodCollision with the line:

newBits = newBits & " " &k

Where k = tha index of the new bit being added.

I then changed the MoveSnakeBody subroutine so that the direction of a snake bit was only
altered If it was not @ new bit, and so that the newBits string would be emptied once each new bit
had bean moved once, | did this by changing the single line:

snake{i}.Direction = facing|moves - 1
To the following:

If InStr{newBits, " " &1 & ™ ") =0 Then
snake(i).Direction = facing[moves - i)

End If

If i = length - 1 Then newBits = "*

Where i = the index of the snake bit being moved.
8) Create instructions form

) Upon creating the instructions form, there was an Issue whersupon nothing happened when | tried
to start @ new game from the instructions form. This was due to the value of the level selected In
cmblevel not being transferred to the level variable. | resolved this issue by declaring level as a
public variable in the module named mdlSnake.

9) Create user interfaces that match the designs

Using many picture boxes to display the snake logos on the instructions and level selection screens
caused the program to slow down. This issue was resolved by taking a screenshot of the logos and
replacing the many individual picture boxes with single picture boxes containing images of the logos,
named imglogol, imglogoz, and iImgloge3. Also, the labels used In frmSnake to display instructions
{Iblinstructons and Iblinstructions2) were then hidden behind the picture box used to display the
lago. This problem could not be resolved by changing the order properties of the objects concemed,
because plcture boxes always appear in front of labels in VB 6. Instead, | placed Iblinstructions and
Iblinstructions2 in picture baxes of their own. The program is now essentially complete, acco rding to
the design specification outlined and agreed to on page 16,

56 of 125 GCE Computing

Part 2 =Testing

Fage |51

I shall now test the finished program according to the test strategy outlined an page 33, Each test
has been demonstrated by screenshots that are displayed below the test results.

Function belng Method of input Input Expected result Actual result Screenshat
tested ' | _ reference
Level selection Test 1: Combo-box | 1 Snake length: 30 bits | Test 1: As 1(Test1
{crbLevel) and long expected result is
command button Snake facing: right Test 2: As identical to
{crndLevel] on Timer interval: 100 expected test 2 rasult,
menu screen milliseconds thorefore
Test 2; Combao box IblLevel captian: only one
{cmbLevel) and "LEVEL: 17 screenshot is
command buttan displayed)
{emdLevel) an 2 Snake length: 36 bits | Test 1; As 2 Test 1
instructions screen long axpactad result is
Snake facing: right Test 2: As identical to
Timer interval: 90 expected test 2 result,
milliseconds therefore
IblLevel caption: only one
“LEVEL: 2¥ screenshot is
displayed)
3 Snake length: 42 bits | Test 1: As 3(Test 1
leng expected result s
Snake facing: right Test 2: As identical ta
Tirner interval: 80 expeched test 2 result,
milliseconds therefore
IblLevel caption: only ong
“LEVEL: 3" screenshot is
displayed)
| 4 Snake length: 48 bits | Test 1. As 4 (Test 1
i long expected result is
? Snake facing: right | Test2: As identical to
; Timer interval: 70 expected test 2 result,
| milliseconds therefore
IblLevel caption: anly one
“LEVEL: 4* screenshot is
displayed)
5 sSnake length: 54 bits | Test 1: As 5(Test1
long expected result is
Snake facing: right Test 2: As identical to
Timer interval: 60 expected test 2 result,
milliseconds therefore
IblLevel caption: only ona
“LEVEL: 5" screenshot is
displayed)
] Snake length: 60 bits | Test 1: As 6 {Test1
long expected | result is
Snake facing: right Test 2: As identical to
GCE Computing 57 of 125

Page | 52

[Timer interval: 50 expected test 2 result,
mliliseconds therefore
lblLevel caption: only one
“LEVEL: 68" screenshot is

displayed)
7 Snake length: 66 bits | Test 1; As 7 (Testi
long expected result is
Snake facing: right Test2: As identical to
Timer interval: 40 expectod test 2 result,
milliseconds therefore
IblLevel caption: only one
“LEWEL: 7 screenshot is
displayead)
8 Snake length: 72 bits | Test 1: As BiTest1
long expected result is
. Snake facing: right Test 2: As identical to
{ J Timer interval: 30 expected test 2 result,
milliseconds therefore
IblLevel caption: anly ane
“LEVEL: 8" screenshot is
. displayed)
9 Snake length: 78 bits | Test 1: As 9 |Test 1
long expected result is
Snake facing: right Test 2: As identical to
Timer Interval: 20 expected test 2 result,
millliseconds therefore
IblLevel caption: only one
“LEVEL: 97 screenshot is
L displayed)
10 Snake length: 84 bits | Test 1: As 10{Test 1
long expectad result is
Snake facing: right Test 2: As identical to
A Timer interval: 10 expected test 2 result,
) millisaconds therefore
IblLevel caption: only one
“LEVEL: 10" screenshot is
displayed)
Movement of When in a game, Up (when head | Snake's head will As expected 11,12
snake pressing a is facing right or | face and therefore
directional button | l=ft) move upwards, and
on the keyhoard each tralling snake
bit will move to
follow the path of
the head every time
) the timer is called |
Right {when Snake's head will As expected 13,14
head is facing face and therefare
up or down) move upwards, and
each tralling smake
bit will move to
follow the path of
the head every time
the timer is called
Down (when | Snake's head will As expected 15, 16
58 of 125

GCE Computing

Page |53

GCE Computing

head is facing face and therefore
right ar left) move down, and
each trailing snake
bit will move to
follow the path of
the head every time
the timer is called
Left (when head | Snake’s head will As expected 17,18
Is facing up or face and therefare
down) rmove feft, and each
trailing snake bit wiil
move to follow the
path of the head
every time the timer
is called
Up {when head | Mo change As expected 19 (the .
is facing up or results for :'l
down) when the '
head is facing
up and down
are identical,
therefore
only one
screenshot is
displayed)
Right {when No change As expected 20 (the
head is facing results for
right or left) when the
head iz facing
right and left
are identical,
therefora
anly ane .
screenshot s j
displayed)
Down (when No change As expected 21 {the
head is facing results for
up or down) when the
head is facing
right and left
are identical,
therefore
only ane
screenshot s
displayed)
Left {when head | Mo change As expected 22 (the
Is facing right or results for
left) when the
| head is facing
right and left
are idantical,
therefore
J:}nry o
screenshot is

59 of 125

Page |54

displayed)

None

Coordinates of
snake's head are
continually
incremented by 10
pixels in the diraction
that the snake's head
is facing and each
tralling snake bit
moves ta follow the
path of the head
every time the timer
is called

As expected

| Collision with walls

When ina game,
directing snake’s
head into a border

| of the game screen

using directional
buttons on the
keyboard

Up, to direct
snake’s head
into top border
of game screen

The instant the
snake’s head goes
beyond the border of
the game screen, an
Errar message is
produced and the
game ends, returning
to the initial menu
SCreen

As enpected

23-27 show
bits 1 to 4 of
the snake’s
body moving
in the path of
the head.

28 shows the
head moving
after all
trailing bits
have moved

29 shows
snake on the
edge of the
screen, about
to collide.

30 shows the
snake just
beyond the
screen, and
the end game
arror
message
being
displayed.

31 shows the
initial menu
screen that is
returned to.
This screen is
the same as
that seen in
the follewing
wall collision
tests, 5o 1 will
only display it
once,

Right, to direct
snake’s head
into right
border of game
SCrEen

60 of 125

As above

As expected

32 shows
snake on the
edge of the
screen, about
to collide.

33 shows the
snake just
beyand the
sereen, and
the end game
BFFOF
MESSIEE
being
displayed.

GCE Computing

Page |55

Daowrn, to direct
snake’s head
into bottom
border of game
SCPEen

As above

As expected

34shows |

snake on the
edpe of the
screen, about
to collide.

35 shows the
snake just
beyond the
screen, and
the end game
error
message
being
displayed.

36 shows
snake on the
edge of the
screen, abou.
to collide.

37 shows the
snake just
beyond the
screen, and
the end game
arrar
Message
being

| displayed.

38 shows the
snake the
instant

befare its
head collides
with its body
39 shows the 1
errar
MESSAge
being
displayed

40 shows the
snake's head
just about to
collide with
food.

41 shows the
food being
maoved to
anather
position on
the scraen

Left, to direct
snake's head
into left border
of game screen

As above s expected

Collision with own
body

When In a game,
directing snake’s
head into its own
body using
directional buttons
on the keyboard

The instant tha
snake’s head has the
same toordinates as
ary ane of its trailing
snake bits, an error
message s produced
and the game ends,
returning to the |
initial menu screen

Directional
huttons on
keyboard used
to direct snake's
head

As expected

| Collision with food
[with no level
advancement)

‘When in a game,
directing snake's
head into a food
item using
diractional buttons
oh the keyboard

AS &mpected-—
this test was

Directional
buttons on
keyboard used
to direct snake’s
head inte a food
itern (excluding
every fifth food
iterm eaten)

Food item randomly
maoved to another
position on the game | carried out ten
screan (that is not times to
currently ooctupled by | demonstrate
a snake hit) that food was
never placed on
top of 2 snake
bit, however
| anly two
| screenshots are
displayed as the
results were
| similar each
time

GCE Computing 61 of 125

Page | 56

Collision with food | As above Snake directed | Food item randomly | As expacted 42 shows the
(weith level onto a food meved to another snake's haad
advancement) itern when position on the game just about to
foodCount =4, | screen (that is not collide with
and level currently occupled by food.
number is <= 10 | a snake bit}; Snake 43 shows the
length: increased by snake's
& bits; Timer interval length being
controlling snake increased,
speed: decreased by food being
10 milliseconds; moved and
IblLavel caption: IblLevel’s
"LEVEL: [level]™ caption being
changed.
44 and 45
show the
; timer interval
'] before and
after it is
alterad
between
bevel 1and 2
Snake directed | Food item randomby | As expected — 42,43
onte a food moved to another Mo additional
item when position on the game | screenshots are
foodCount =4, | screen (that is not shown because
and laval currently accupied by | 42 and 43
number is > 10 | a snake bit); Snake demaonstrate all
length: increased by | that ocours
6 bits; iblLevel
caption: "LEVEL:
[levell”
Mo change to timer
N . interval]
Unlimited level Disable collision Ma Up to and including | Mot quite as 45 shows the
advancement dataction with own lewel 10, the interval | expected —the | game at level
body or borders of of the timer timer intervals | 50. By this
game screen, then controlling the and snake point the
continually snake's speed will be | lengths were snakie was
advance through decreased by 10 at updated mowing muich
levels up to level every new leveland | correctly, but slower than it
50 snake length willbe | beyond level 15 | should have
increased by & bits; the snake been.
Beyond level 10, the | began to slow
tirer interval will down with each
remain at 10 level
milllseconds, and at | completed,
every new level the Because the
snake length will be | timer Intervais
increased by 6 bits were correct, |
attribute this to
inefficient code
contrelling
sniake
62 of 125

GCE Computing

Page |57

IMOVEment,
| Displaying Clicking the MA Displays instructions | As expected 47 shows the
instructions instructions buttan screen by setting the instructions
{emdinstructions) visible property of SCTEen
ofn the menu frminstructions to displayed
SCreen True and the visible after comd-
property of frmSnake Instructions is
to False clicked
Returning to initial | Clicking the back MA Retumns to initial As expected 48 shows the
menu screen from | button (cmdBack) menu screen by initial menu
the instructions on the instructions setting the visible sCreen
screen soreen property of displayed
frminstructions to after
False and the visible cmdiack is
property of frmSnake clicked
to True |
)
GCE Computing 63 of 125

Pege |58

Screenshots

Screenshot | Screenshot
reference
1

64 of 125 GCE Computing

Page |59

J S A A LR L R P L A R

GCE Computing 65 of 125

Page |60

|

R R I B Lo

66 of 125 GCE Computing

Page |61

SRR N RN TN EE TR NN

N R REEN] Cebddid e g

GCE Computing 67 of 125

68 of 125

10

(R R

(NENERNEE RN NN N L

EETENE N

TIEII L LA

L bl g e e L

pa i e inni LI i i IR IRRRBETILIN

Page |B2

GCE Computing

Page | 63

11

1z

D i s dbiiddddids

GCE Computing 69 of 125

Page |64

13

14

70 of 125 GCE Computing

Page |65

15

TEETE NN NN TR

16

1J.‘.JJJJJ INEREEEE RN TN

GCE Computing 71 of 125

FPage |BB

17

18

72 of 125 GCE Computing

Page |67

19

24

OO

GCE Computing 73 of 125

74 of 125

21

22

TR NE N

FETIT T Ll T T

[mm -

Page |68

GCE Computing

Page |69

MR R L] ”'I

24

GCE Computing 75 of 125

Page |70

[N RN RIS R RN N NN SR R

26

} (AEEIE RIS I N R AT TN 1

76 of 125 GCE Computing

Fage |71

27

28

GCE Computing 77 of 125

Fage |72

29

78 of 125 GCE Computing

Fage |73

R I RARTEE]

E¥)

R S N FNREFIFER]

GCE Computing 79 of 125

Page |74

FENFANENNNNNEY.

80 of 125 GCE Computing

Page |75

35

12

ELLL IR AR E L N LRiLd

GCE Computing 81 of 125

Page |76

£y

RIEERSEANENNEEF Y EEEEE |

38

82 of 125 GCE Computing

Page |77

39

i

GCE Computing 83 of 125

Page |T&

41

a2

84 of 125 GCE Computing

43

44

CLCLIETIIT:

Page |79

lewel = level 4 1
i1blLevel Caprion = "LEVEL: ™ level

o It 1cve1 < 10 ToesfE -

For k = length To (Ldemrhdovidnakalmtanal = 160

inginake (kj .Visible = True

AEdBits = newldits & " " £ k

Salect Came Anake [Lengeh - 1) .Direckdon
Coag)

snnke k) .Y = ingSnake (k) . Top

snake (k) .X = ingSnake (k) .Lefc
mnake (ki .Dir=otion = 1

Case 2
Ing8nake{k) .Top = (snakelk - 1).%)
anake (k] ¥ = ingSnake (k) . Top
ingomake (k) .Lefv = spnake(k - 1) .X
anakes (k] .X = ingSnake (K]} .Laft
anake kK] .Direction = 2

Case 3
AmgSnake (k) Tep = (snake(k - 1).%)
anake (k) .7 = imginake (k) .Top
imgSnaks (k) -Lefc = anake(k - 1} .X

I[erilh :J |1:!1u:|u.l'nnd:allllln|1 '\-I
Peivate Biub CheckFaddColli=icn() 'checks for oollision with food j
If smake(0).¥ = foodYop And snelke(0) .X = foodlefr Then
If foodCpunt <% 4 Then "foold collision with pa level advancsmant
foodCount = foodCount + 1
Elme *food collision with Level advancenent
foodCount = 0 "inoremspnts level,

refremhes lbolLlewel and adjust -'l
s

Load imgfnaks(k} Tloade new snaks bite, makes chem visible

'acgcording to Eheé dipasel

imgSneke (k| .Top = snake(k - 1) .¥ = 10

ingSnake [k} .Lefc = (gnake(k - 1} .X)

facing {moves — k] = snakelk}.Directlion

= i@

facing (moves — K} = aneke (k) .Direction

+ 10

GCE Computing

85 of 125

Page |BO

r
45 it Prapectl § fisniie) { i O]
i Jisenersn =] [cmeckFecdColision |
T
| Private fub CheckFoodCollisdcn() "ghecoks for collisien with food j
IE anake |0].¥ = foodTeop And snake (0] .X = Coodleft Then
If foodCount <= 4 Than ‘food wollision with no Lewvel sdvancament
fesdCeunt = foodCount + 1
Elne "Feod oollision with level advancement
foodtount = 0 ‘ipcrementd lewel, refreshes lbllevel snd adjvsce
§ level = lovel & 1
2 1blLevel, Caption = "LEVEL: "™ & level
8L] 1t bpwel <= 0 Then tamrBon
= For k = length To (1sbrehd
Load imgSmake (k) Tioads fnew anaks bics, makes them visible
imgAanke (k] Visible = Tiue
newBite = pewlits 6 Y 7 & K
Selest Coms snake{length - Lp.Direction ‘pooording Ba cthe dipeati
case 1
imganake (k) .Top = oooke(k - 1).% - 10
i #nake (k) .Y = imgSneke (k) .Tap
% imgfnake (k) el = (speke(k - 1§.K)
snaks (k) X = inginake (k] .Lefr
snake (k] .Dirsceisn = 1
facing (moven - ki = onake (k) .Direction
Case 2
imgSnake (k) .Tap = [(Enake(k - 1).¥)
mnake (kb . ¥ = imgSnake k) .Top
i ing8nake (k] Left = aneke(k - 1).% - 10
snoke (k) X = imginake (k) Lofe
anake (k) .Direction = 2
facing (mowes - k) = onake (k) .Directisn
Came 3
imgdnake (k) .Tap = [enake (k — 1} %) 4 10
snake (k) .Y = imgSnake (k) . Tap
imginake (k] .Left = snake (k - 1).% -
T "
—'Fﬁ'lﬁJ Rl =i, e 1 2 e A o - -ty ey iy B 52 T -"-'.lrrd‘
86 of 125

GCE Computing

Page |81

H_IJ.'.'JJ_LI_'_IJ_I'_LIJ_LI
i

-

=
L

AL

1

T O T T O

o

[EERENEEEAERENS RS AR
-

I -

N R I GO A OO _i_|_|_|J_|__|_I_|_|-

GCE Computing 87 of 125

47

w0 |_'|f‘| 115
lex

ey e food e

j..J_L.L. o
ﬂ_lJ_L._I_I_L.LL_J_IJJ_'.- NRTERTTRR TRNR RN AR RARRT

88 of 125 GCE Computing

FPage | B3

43

GCE Computing 89 of 125

Page | 84

Result of testing

B'y; testing the program according to my test plan, | have shown that all features are functional, with
ane exception. The snake speed Increases as desired with every level increase up to level 10, and
remalns constant, 35 desired, up to level 12. However, with level increases above level 12, the snake
appears to slow down. As the timer interval is still correct at such levels (it has the desired value of
10 milliseconds), | believe that the cause of the slow-down is the result of the inefficiency of the
code controlling the snake's movement,

| have partially fixed this problem by reducing the amount of for...next loops executed with
each snake movernent. | did this by incorparating the CheckSnakeCollision subroutine into the
MaoveSnakeBody subroutine, whilst swapping the F's and k's in the snake collision detection
algorithm around. This is only a partial solution, as the snake still appears to slow down at levels
above level 15, To fully fix the problem, the method of snake movement would have to be
fundamentally changed, and so | shall lzave this to be a consideration in the project’s evaluation.

These changes are displayed balow:

Original separate code:

P oveSnake Body

Fori=1To (length - 1)

If InStr{newBits, " & i & " ") =0 Then
snake(i).Direction = facing(moves - 1)

End If

If i = length - 1 Then newBits = ™

Select Case snake(i).Direction
Case 1
snake(l].Y = snakell).y + 10
imgSnakeli).Top = snake{i).y
Case 2
snakelilX = snakel]).X + 10
imgsnake(l).Left = snakeli).X
Case 3
snakelll.Y = snakeli).Y - 10
imgsnake(i).Top = snake(i).¥
Case 4
snake(i).X = snake(i).X - 10
imgSnakeli).Left = snake(]).X

End Select

Mext i

CheckSnakeCollision

For k=1 To {length - 1)
if snake(0).Y = snake(k).Y And snakef0}.X = snake(k).X Then
tmrMoveSnake.Enabled = False
isgBox (“Snake Dead!”)

90 of 125 GCE Computing

Page |85

Fori=0To {length - 1)
imganake(i).Visible = False
If | = 4 Then Unload imgSnakeli)
Mest |
Call EndGame
End If
Mext k

Combined subroutine called CheckSnakeCollisiondind MoveSnakeBody:

Fori=1To(length - 1)

If snake|0).¥ = snake(i].Y And snake{0).X = snake{i).X Then
tmrivioveSnake.Enabled = False
MsgBox (“Snake Dead!")

For k=0To (length - 1)
imgSnake({k).Visible = False
If k= 4 Then Unload imgSnake(k)
Mext k
Call EndGame
Exit Sub
End If
If InSte(newBits, " " B i & " "} = 0 Then
snakell].Direction = facing{maoves - i)
End If
i i=length- 1 Then newdiks = "
Select Case snakell). Direction
Case 1
snakelil.Y = snakelil.Y + 10
imgSnake(i).Top = snake(i}.Y
Case 2
snakefi).X = snake(i).X + 10
imgsnake{i).Left = snake(i).%
Case 3
snake(ilY = snake(i).¥ - 10
imgSnake{l).Top = snake(i).Y
Casa 4
shake|l}.X = snake(i].X - 20
imgSnake{i).Left = snake(il.X
End Select
Mext |

GCE Computing 91 of 125

Evidence of improvements

In order to evidence the above improvements | shall time how long it takes for the snake to move

from the left to the right hand side of the game screen, therefore covering a distance of 900 plxels,

and then 1 shall divide the result by 90 to give the amount of time it takes for the snake to make a

single movement. | shall perfarm this test for levels 10 to 20 using both the old and the new code.
The results are displayed in the table balow.

Level Time taken tomove 900 | Time taken to move 10
pixels {milliseconds) pixels {milliseconds)
Original | Altered Original Altered
coda code code code

10 920 910 10.2 10.1

11 940 920 10.4 i0.2

i2 960 820 10.7 10.2

i3 1310 240 14.5 10.4

14 1660 290 184 11

i5 1990 1040 22.1 115

16 2300 1290 25.5 14.3

17 2720 1510 30.2 16.7

8 | 3020 1820 33.5 202

19 3660 2050 40.6 227

20 | 4120 2340 45.7 6

As can be seen, there is a marked improvement in the degree to which the snake slows down when

the altered coda is run. However, as previously mentioned, this is cdearly only a partial fix —a new

version of the program that could overcome this problem will be proposed in the evaluation stage of

thie project.

92 of 125

GCE Computing

User testing

_FPage |87

| have discussed with my users the fault with the snake’s movement that | found and partially
corrected, and they have accepted that a complete fix would result In the development of a radically
differant program. With this in mind, they have each carried out testing of the program by playing
the game as a normal player would, and filling in the following questionnaire,

Question | Question Anzwear (YN} Comment

number

i Do all the buttons and list
boxes work?

2 Mre all the buttons/list hoxes
in appropriate places?

£ Are the on screen
prompts/statemaents useful,

| COorrect an;l_sufﬁt:lent?

&4 Does the system provide
enaugh on screen
instruction?

5 Is tha colour scheame
appropriate?

I Does the'é','sltern’s look - i -
sufficiently match the
ariginal designs?

7 Is it clear how you are to
control the snake?

&) I5 It clear how you are to
advance through the gamea?

9 Are the error messages clear
and useful?

10 Is the game too easy?

11 Is the game too difficult?

[12 I5 the game screen size as
desired?

13 Does the application meet

all the requirements of the
initlal specification?

Please write here any comments that you
have about the system that were not
| coverad by the above questians

GCE Computing

93 of 125

Page | BB

| shall now list, next to each answer in parentheses, the freguency of each response made by my
SEVEn users. Any negative comments are noted, and will be discussed on the next page.

Question number Question Frequency of answer (Y,/N)
1 Do all the buttons and list boxes work? Yes {7}
Mo (0}
2 #re all the buttons/list boxes in appropriate Yes (3]
places? Mo [4) = these four users noted
that the Instructions form
appeared in a different place on
the screen from the level
selection form
3 Are the on screen prompts/statements useful, Yes (7}
correct and sufficient? Mo {0)
4 Does the system provide enough on screen Yes (4)

) instruction? Mo (3) = these three users
agreed that the player should
be infarmed that there are
miore levels beyond level 10

5 Is the colour scheme appropriate? es (7) = It looks retro’
Mo ()
& Does the system’s look sufficiently match the Yes (7)
original designs? Mo (0}
7 1% it clear how y-n_u'éi'_na'tn' control the snake? Yies (4)
Mo (2) = Thess three users
agreed that it should be more
clear, i.e, that it should say at
the top of the instructions
screen how you are to control
) the snake
B Is it clear how you are to advance through the Yes (7)
) game? No (0]
9 Are the error messages clear and useful? Yes (7)
Mo (0]
10 Is the game too easy? Yes (0)
Mo (7}
11 Is the pame too difficult? Yes ()
Mo (7)
12 Is the game screen size as desired? Yes (7]
Mo (0]
13 Does the application meet all the requirements of | Yes {7}
the initial specification? Mo (0
94 of 125

GCE Computing

Page |89
There were few negative comments from my users, but the following were made:

1} The player should be informed that there are more levels beyond level 10
2} 1t should say at the beginning of the instructions screen how you are to control the snake

3) The instructions form appears at a different place on the screen from the initial menu screen
— it should instead appear in the same place

| have dealt with each comment Individually, as follows:

1 and 2: | fixed bath of these issues by saying at the end of the third line on the instructions screen
“There are potentially an unlimited amount of levelsl”, and by inserting the line "Control the
movement of the snake's head using the directional arrows, and its body will follow the path of the
head.” at the top of the instructions screen. The instructions screen now appears as below.

; 7 T o ¥ A T e a1 R

[ARNLEas

INSTRUCTIONS

Contiol the movairient of e snak

3: This problemn was simply resohved by changing the StartUpPosition propery of frmiinstructions
from 3 (windows default) to 2 {centre screen).

The changes | have made resulting from user testing have been purely Issues of aesthetics,
and as such no further testing needs to be carried out on the program to ascertain functionality.

GCE Computing 95 of 125

Page |90

Annotated code — form named frmSnake

Below is the final program code for Snake, including the changes that resulted from testing,

This Is the form named frmSnake in its two states:

_______ __ _ |

These are the objects that it inftially contains: imgSnakel0 to 4], cndPlay, embLevel, Iinstructionsl,
Iblimstructions2, ermdinstructions, imglogol, imglogo2 and |blLewvel.

Declarations for frmSnake variables — these are written at the top of the code,
descriptions of each variable are written after the apostrophe

Option Explicit 'forces me to declare all variables
Dim snake{9999) As SnakeBit 'stores s and v values, and direction facing for each snake bit

Dim valid As Boolean 'used to flag wp if a food item is to be placed on top of a snake bit so that this
can be avoided

Dim | As Integer ‘constants

Dim k As Integer

Dim length As Integer ‘stores length of snake and is equal to number of snake bits - 1

Dim foodTop As Single 'stores top value of food item

Dim foodLeft As Single “stores left value of food item

Dim facing(-84 To 999593} As Byte 'stores the direction the head was facing (the value stored) an
a particular move (the index)

Dirmy moves As Long 'stores amount of times the timer is called

Dim keyPressed As Single 'stores keycode value of directional button pressed

Dim foodCount As Byte “stores how many food items are eaten, up to every 5th item eaten
Dim newBits As 5tring "stores the index of each new bit that arises after a level up

Form load and button click subroutines

96 of 125 GCE Computing

Page |91

Private Sub crdinstructions_Click()

frmSnake.Visible = False This hides the level selection screen
frminstructions Visible = True and displays the instructions screen
End Sub when crndinstructions Is clicked

Private Sub Form_Load()

This ensures that the starting valie
cmbLevel Text = 1

| of cmblLevelis 1
End Sub I
Private Sub crdLevel_Click() ,
level = cmblevel Text When crndlevel is clicked, this sets Jewvel’ ta the value selected by
Call StartGame the player and then calls the subroutine named StartGame

End Sub

StartGame subroutine — (this is a public subroutine, so that it can be called

from frminstructions)

Publlc Sub StartGarma()

Iblinstructions.Visible = False This hides and disables the buttons,
Iblinstructions2. Visible = False combo box, labels and imoges
IblLevel.Visible = True particular to the level selection
cmdLevel. Visible = False screen and displays the level display
cmbLevel.Visible = False and makes the background of the
cmdinstructions.\Visible = False form black

cmidLevel Enabled = False

emblevel.Enabled = False
cmdinstructions.Enabled = False
frmSnake.BackColor = BHO&
imgLogol.Visible = False
irmglogod. Wisible = False

length = 30 {[ievel - 1) = &)

For k=0 To (length - 1)
If k = 4 Then Load imgSnaka(k)
imgSnakelk). Visible = True
imgsnake(k).Top = 300
snake(k).y = 300
imgSnake(k).Left = 300 - (10 * k)
srake(k). X = 300 - {10 * k)
snake(kh.Direction = 2

This sets the length of the snaoke according to
the level chasen, staring this in Tength’, loods
images of snate bits if they aren’t already
foaded, makes them wisible, positians them, sets
x and y co-ordinotes of snake” ond sets
directional values of ‘snake’ to 2 (right}

Mext k
Fori=-84To0 This initialises Focing” so that the defoult value for Tocing” for
facing(i} = 2 | oll storting snake bits is 2
Mexti
moves =0

GCE Computing 97 of 125

foodCaunt = 0
IblLevel.Caption = "LEVEL: " & lavel
tmriiovesnake.Enabled = True

This initiolizes the variobigs ‘moves’
and foodCount’, sets the level
display end enables the timer thot
controls snake movement

Call PlaceFood
tmirtloveSnake.nterval = 110 - [level * 10}

Call tmrioveSnake Timer
End Sub

PlaceFood subroutine

This adjusts the interval of the timer
depending on the level chosen

Private Sub PlaceFood()
Do
Randomize
valid = True

This randomises the Rondom function in
visual bosic 6, initlallses valid” with o value
of true and obiains rondom x amnd y values
for the foodLeft’ ond foodTop® that are
muitiples of 10 and between O and 590

foodTop = Int{Rnd * 89) * 10
foodLeft = Int{Rnd * 89} * 10
For k = 0 Ta [length - 1)

If feodTop = snake(k).Y And foodLeft = snake(k].X Then

valid = Falze
Exit For
End If
Mextk
Loop Until valid = True
irmgFood.Visible = True

Page |2

This ensures that food lsn't placed on top of
snoke bit, by looping through all snoke bits and
determining whether the foodTop/foadleft co-
ordinates are the some as the co-ordinates of
ony one snake DL If they are, then “valid' is folse
and new co-ordinates are randomiy chosen and
the process continues untll! “valid” remains true

imgFood.Top = foadTop
imgFood.Left = foodLeft
End Sub

This positions the food imoge with the co-ordinates
now stored in foodTop” ond foodleft’ and ensures
that it is visible

Timer event subroutine

Private Sub trnrvoveSnake Timear|)

the omaount of moves made, and calls the

This increments the amount in ‘moves’ to store

moves = moves =1

Call CheckSnakeCollisionAndMoveSnakeBody
Call MoveSnakeHead

Call CheckWallCollision

subroutine to move the snoke’s body and check
for a snake callision, then colls the subrovtine to
maove the snake's head, then calls the subrouting
to check if there is o wall colifsion

End Sub

CheckSnakeCollisionAndMoveSnakeBody subroutine

Private Sub CheckSnakeCollisionAndMoveSnake Body|)

Fori=1To {length - 1)

If snake(D).¥ = snake(i).Y And snake(0).X = snake{i).X Then

tmrivioveSnake,Enabled = False
MsgBox ("Snake Dead!")

98 of 125

This checks for o snake colfision by looping
throwugh the snake bits that follow the heaa
ond determining whether the snake’s head
hos motching co-ordingtes. If o colifsion s
defected, the timer is disubled, the snake is
made invisible and alf but 5 snake bits are
unfoaded, an error message Is proguced
and EndGarme is called

GCE Computing

Page |93

For k=0 To (length - 1)
imgSnake(k).Visible = False
if k = 4 Then Unload imgSnake(k)

Mext k
Call EndGame
Exit Sub This alters the snoke bits direction stored in snake().Direction
End If so that they fuce the direction that the head was facing on @
If InStr{newBits, " " & | & " *) = 0 Then move nembered (moves- number of snoke bit), provided the
snake(i).Direction = facing{moves - i) snake bits have not just been added to the snoke os a result of
End If a level increase, In which case the index of the snake bit will be
If1 = length - 1 Then newBits="" stored in "new8its’. It then ensures thot ‘newBits’ is emptied
Select Case snake(i).Direction when all new bits have been moved once, so that they oct like
Case 1 normal bits
snakeli).¥ = snakefl).Y = 10
imgSnake(i). Top = snake(i).¥ This moves each bit of the snake's body by 10 pixels according
Case 2 ta the direction it is focing, by increasing/decreasing the values
snake(l).X = snakeli).X + 10 stored in ‘snake(il.X" and setting this value to be
imgSnake(i).Left = snaka{i).X imgSnakefi).Left if the snake bit is focing right or left (ie when
Case 3 ‘snake(l).Direction’ = 2 or 4) or increasing/decreasing the
snakeli}.¥ = snakel(iL¥ - 10 values stored in ‘snake(l).Y’ ond setting this vaive to be
imgSnakeli).Top = snake{i).Y imgSnake(i). Top if the snoke bit is facing up or down (ie when
Case 4 “snake(il.Direction” = 1 or 3)

snake(i) X = snake(i).X - 10 -
irmgSnakeli).Left = snakeli) X
End Select
Mext |
End Sub

GCE Computing 99 of 125

_FPage |94

MoveSnakeHead subroutine

Private Sub MoveSnakeHead()
Select Case snake(0).Direction
Case 1
snaka(0).¥ = snake(0).¥ + 10
img&nake{0). Top = snake(0).Y
facing(moves) = 1
Case 2
snake|0).X = snake(D).X + 10
imgSnake(l).Left = snake(0].X
facing{moves) = 2
Case 3
snake(0).Y = snake(0}.Y - 10
imginake(0).Top = snake(0).Y
facing(moves) = 3
Case 4
snake(0).X = snake{0).X - 10
imgSnake(0).Left = snake(0).X
facing(moves) = 4
End Select

This moves the snake's heod by 10 pivels occording to the
direction it is focing, by increasing/decreasing the vaiues
stoved in Snoke(0).X" ond setting this value to be
ImgSnake(0).Left if the head is facing right or feft {Te when
‘snoke(D).Direction” = 2 or 4) or increasing/decreasing the
values stored In ‘snake{0LY" and setting this value to he
imgsrake(0), Top If the head is focing up or down {ie when
‘snake(0).Direction” = 1 or 3), It then stores in facing” the
direction {the value stored) on this particular move (the index)

End Sub
Check\WallCollision subroutine

Private Sub ChackWallCollision{}
If snake(0). X == 300 Or snake{0).X < 0 Or snake|0).¥ »= 900 Or snake(0).¥ < 0 Then

tmrilaueSnake.Enabled = False This detects when the share’s heod collides
hisgBox ["Snake Dead!) with the borders of the game screan, by
Fori=0To {Iengt_h -1 determining whether X the co-ordingtes of
imgSnake(i).Visible = False imgSnake(0) that ore stored in snoke(0).X ore
ITi>4 Then Unlaad imgSnakeli) 2= 800 or <, or whether the ¥ co-ordinates
Next | stored in snake(3).Y are =300 ar <0,
Call EndGame if this condition is true, then the timer is
End If) disabled, an error message is displayed, all the
Call CheckFoodCollision snake images are mode invisible and afl apart
End Sub from 4 are unloaded, then EndGame is called.

100 of 125 GCE Computing

Fage |95

EndGame subroutine

Private Sub EndGamel)
imglegol. Visible = True
imgLogo2. Visible = True
frmSnake.BackColor = BRHBOBMB0D
imgFood.Visible = False
Iblinstructions. Visible = True
Iblinstructions2. Visible = True
IblLevel Visible = False
cmidLevel Visible = True
cmblevel Visible = True
cmdLevel.Enabled = True
erblevel Enabled = True
ermdlnstructions. Visible = True
emdinstructions, Enabled = True

End Sub

This Is the subroutine that Is colled when a
game of smeke ends, It hides the game screen
and displays the level selection screen by
making the logo images visible, setting the
background colour of frmSnake to grey, making
the food image invisible, moking the
instructions labels visible, maoking the fevel
display invisible and making the combo box and
buttons of the level selection screen visible and
enabled,

GCE Computing 101 of 125

CheckFoodCallision subroutine

Private Sub CheckFoodCollision()

If snake(0).Y = foodTop And snakel0).X = foodLeft Then

If foodCount <= 4 Then
foodCount = foodCount + 1
Else
foodCount=0
level = level + 1
IbiLevel.Caption = "LEVEL: " & level

Page |96
This checks for o collision with food by
determining whether the X co-ordingtes of
imgSnoke(0) that ore stored in snake{0).X
ore the same as the X co-ordinates of
imgFood stored fn foodleft' and whether
the ¥ co-ordingtes stored in snake(0). ¥ ore
the same as the ¥ co-ordinates af ImgFooa
stared in FoodTap’.

If this is true, and if foodCount’ is
<= 4, then there i no level up and
FoodCount” Is simply incremented,

If FoodCount’ = 4 then it gets

If level <= 10 Then tmrMoveSnake. nterval = 110 - {level * 10) | reset to 0, Tevel” gets incremented, the

For k = length To (length + 5)

102 of 125

Load imgSnake{k)
imgSnake(k}.Visilzle = True
newhits = newBits & "" & k
Selact Case snake({length - 1).Direction
Case 1
imgSnake(k).Top = snake(k - 1).¥ - 10
snakelk).Y = imgSnake({k).Top
imgSnakeik).Left = (snakel(k - 1).X)
snake(k).X = imgSnake(k).Left
snake(k).Direction = 1
faclngimoves - k) = snake(k).Direction
Case 2
imgsnake(k).Top = (snake(k - 11.Y)
snake(k).¥ = imgSnake (k). Top
imgsnake|k).Left = snake(k - 1).X - 10
snake(k).X = imgsnakelk).Left
snake(k).Direction = 2
facingimoves - k) = snake{k}.Direction
Case 3
imgSnake{k).Top = (snake(k - 1).¥) + 10
snake(k).¥ = imgSnake{k).Top
imgsnake(k) Left = snake(k - 1).X
snake(k).x = imgEnake(k).Laft
snake(k).Direction = 3
facing{moves - k) = snake{k).Direction
Case 4
Imgsnake(k). Top = snakelk - 1LY
snake(k).Y = imgSnake(k). Top
imgsnake(k).Left = {snake{k - 1).% + 10)
snake(k).X = imgsnaka(k).Loft
snake(k).Direction =4
facingimowes - k} = snake(k].Direction
End Select

Mext k

level dispiay in IbiLevel Is refreshed and
the timer interval s changed If necessary.
Then this loads images of the six
new snake bits , makes them visible ar]
stores their indexes in newBits’, ’

| toil {the end snoke bit] occording to the

| eoch new snake image the fop volues of the

This positions each new snake imaoge behind the
direction the end is facing . it does this by giving

snake bit before it and the left values of the
snake bit before it minus 10if the tail is focing
right, or plus 10 {f the tail is focing left; or by
giving edach new snake bit the left values of the
snioiee bit before it and the top values of the
snake bit before it minus 10F the tail s focing -I
up, or plus 10 if the tail s facing down.

It then updates the X and ¥ co-ordingtes stored
in snoke(k).X and snakek).Y to the left ond top
values of imgSnake(k), ossigns the directionoi
vilue of the end snake bit to the newr snake Bit,
ond updotes facing{moves-k) to store
snokefk).Direction so that the new snake hit
Jollows the tail

GCE Computing

Page | o7

1 th i fangth (if the
length = length + 6 This updates the value stored in length (if |

End If level has been incremented) and then calls
i futicr A
Call PlaceFood | Placef J
End If
End Sub

Key press event subroutine

Private Sub Form_KeyDown(KeyCode As Integer, Shift As Integer)
keyPressed = KeyCode
Select Case keyPressed

Caze 37
If snake(1).¥ <> snake(0).¥ Or snake{1).¥ < snake{0).¥ Then snake(0).Direction = 4
Case 38
If snake(1).X <= snake(0).X Or snake(1).X <> snake(0).X Then snake{0).Direction = 3
Case 39
If snake(1).¥ <> snake(D).Y Or snake(1).¥ <> snake(0).Y Then snake{0}.Direction = 2
Case 40
If snake(1).X <> snake(0).X Or snake(1).X <> snake(0).X Then snake{D).Direction = 1
End Select
End Sub This is the subrowtine colled when a key on the
keyboard Is pressed. It sets “keyPressed’ to the
key code value of the key that was pressed, ond
then adjusts the direction thot the snake’s head
iz facing according to which directional button
was pressed, ond ensures thot the snoke can
only chonge direction to down or up [f
“snake{1).Y" is mot equal te Snake(0LY, and the
snoke con only change direction to left or right
If snakef1).X' ls not equal to Snake(0).X', 50
) that the snake cannot go bock Inside itself. .
|

GCE Computing 103 of 125

Page |98

Annotated code — form named frminstructions

This if the form name frminstructions:

AL EINN N |

| =
J|_|_|'_|,|I_J:II..I||I_.|.L|'_I_|.L_|J_'.IJ.LLI.L1

These are the objects that it contains: imglogo, imglogo3, cmblevel, cmdlLevel, cnd Back,
Iblinstructions3 and lblinstructionsd

There are no declarations in the code for frmSnake. The code consists only of form load and button
click subroutines.

Form load and button click subroutines

) Private Sub Form_Load(]
cmblevel Text =1
Iblinstructionsd.Caption = "Select a difficulty level from the drop-down box and click the PLAY
button to begin the game." & vbNewline & "The difficulty level determines the speed at which
your snake moves, and the length at which it starts." & vbNewline & "Control the movermant of
the snake's head using the directional arrows, and its body will follow the path of the head." &
vbNewLine & "The objective of the game is to prograss through as many levels as possible, by
directing the snake's head onto food items that will appear as pink blocks on the screen.” B
vbMewlLine & "Every five food items eaten will increase the level number (displayed at the top of
the game screen), thus increasing the snake's speed and length.” & vhNewline & "The game will
end if the snake's head collides with its own body or with the borders of the game screen.” &
vhNewLine & "SEE WHAT LEVEL CANM YOU REACHI" & vbMNewLine & "G00D LK™

End Sub

This ensures that the default volue of crmbLevel. Text is 1, and fills the coption of
Ibiinstructionsd with the instructions for playing the game when the form loods

104 of 125 GCE Computing

Page |99

Private Sub cmdLevel_Click()

level = amblevel Text When cmdLevel is clicked, this sets the level value to the volue
frmEnake. Visible = True selected by the player in cmblevel, and then makes frmSnake visible
frminstructions.Visible = False | @nd makes frminstructions invisible, and then calls the public
Call frmsnake StartGame subrouting called StortGame

End Sub .

Private Sub cdBack_Clicki)

frmSnake. Visible = True When cmdBock Is clicked, this makes frmSnoke visibie ond makes
frminstructions.Visible = False [frminstructions invisible
End Sub

Annotated code — module named mdISnake

This module exists only to make ‘level’ a public variable and to define the UDT SnakeBit

Declarations of module named mdISnake

Public level As Byte Level is used to store the curent level

Type SnakeBit ' establishing data type for each snake 'bit'
Diraction As Byte “direction the snake bit is facing (1 = down, 2 = right, 3 = up, 4 = left)
¥ As Long ' X coordinate of snake bit
¥ As Long 'Y coordinate of snake bit
End Type

| This creates the data type Snake bit, that consists of
the variables direction {that stores the direction a
snake hit is facing where 1= down, 2 = right, 3 =up,
and 4 = left), X (that stores the X xo-ordinate of a
snake bit) and ¥ {that stores the ¥ co-ordinate of a
snake bit)

Section 4 - Additional documentation

The finished snake program will be distributed online. It will be uploaded to the website
vbgamer.com, 5o the user will be required to download the program in order to play it. The
following documentation completes the guide to the program.

GCE Computing 105 of 125

Contents

106 of 125

Download and installation...... s s
T 1Tt A0 TP
2.1 Starting the application....oew i iesvnnns
2.2 NaVIBARION. v essisinesere et s s sen s e s s s

2.2.1 Initial level selection SCreen... ..o s

2.2.2 Instructions SCreen......o.eeceveresane
How to play the game.........comm e,

3.1 Level selection. o

i EEA BB EES BEEE R R R T R EEd bR

3.2 Controlling the SNaKe... ... e v cismsssesssessrems s sssens s sensssssniinssasns

3.3 LEVEl PrOBresSION e cerremcms s semems e smssasass ssbae s s st b s
Troubleshooting.. ... oo
4.1 Download and installation Issues............
4.2 General 155Ues......ceereecerreeernsreniess

L La Tt | T

CCLEE T PR

B EEE FEE FEE A FASS AR N G R R R

BadEadEnd Brdd BRI ISR AR RN EE

Ak mEd EEd R BEEREEAIE B RGBT

L e e A RS B B RE R EE R EREERRY

e P TR PR PR L R E e T)

GCE Computing

1 — Download and installation

To download Snake:

¢ Click on Start
¢ Click on All Programs
» Selectyour web brohwser

s Type www.vbgamer.com into the address ba jr:ifffiﬁﬂ“*
» Click ‘Games List’ under the Resources tap
R =1L] L T

Fre B+ 12 dbr papr Sobwmr mgsn e

Turn your possion for gomis ?
into o lucrative career ! i 1
i .

GCE Computing 107 of 125

o Click "Mext’ |

|-:|I] ;_..--u..u

L T T

e e P
Scroll to the bottom of the page and right click ‘Download’ on the row of the game
titled ‘Snake’, then click "Save target as..’

e e B T T TR L

&WH ﬂ. ’M._..:-;..' Wb it ¢
e e e 3) - e e

D | konapal kel HEP
ol | i e A g PO

108 of 125 GCE Computing

GCE Computing

= 3elect the folder in which you wish the game to be saved
+ [(lick ‘Open’ ar press enter

Swvalp: |20 Wy Docurmerts

s i 7-2p

E__J {810 2008 David Chang - Bristal gfamier schosl

Fecent ChFamats
My Music
My Pichuresn

@ My Vidzos

DI:IHD-FI BHE‘H Folder

HUMN‘JI.: 5

T visuzl Studio 2008
%) 100 Greatest Peripheral Devices.nptx

ﬁ File pamea: I:rnuk-um -:.

Downloaded:

Dawrioad ta: Chlleargl M JORDANAD, . \enakeexe Him
| Trangler rate: TBIK
| [)Ciosa ihis dislog bex wherl &

109 of 125

2 = Instructions

2.1 — Starting the application

T start the snake program:

» Navigate to where you saved the program

#+ Double click on the file icon

Favotite Linky
| i Dacuments
H BB Fichores
B busic
Mete
Feddati v

A1 Wy Received Fles »
Ui POW20M vild

Shorteut
B0 Brvten
k] Micrasott Wisusl Beic 6
thiortom

i suarcratt 405 byes
u-'!' Ve ™% Wy Dessrinads
L Visual Basic Bun Sl | | i | Shotou
| L} WALKMAN Baciop | 309 brytes
B cownlsads] Portal
5 Favonites Sheout
. Links 141 bytes
B bhsic = Barlralt
Shebatoiit
E’l Plebures TZ e
| B saved Games T¥enity
E Searches . Shortcut
| B Videos i 13 bytes

Sriake et pvv ol sk 23700 /000 (9:57
t’l Apglication Sige 110 MB
Dabe created 2711/ 2081736

et modified

.
g

wha ul
TH byles

Left4 Dead

Snake
Mivtol Gearmmar Sekgal

Taarm Forbress 2
Shortoub
T50 gl

Win dere Live Masrenger
Sicltoat
184 KD

R

gy

110 of 125

GCE Computing

2.2 — Navigation
2.2.1 — Initial level selection screen

This is the initial level selection screen of the Snake program. Each object that can be interacted with
has a corresponding adjacent numbered triangle, with its function explained below.

Irs b s lione Dulton

P

chck the PLA

INSTRLACT DHE

1} This is the level selection box — click on the arrow at the end of the box to select fram a
drop-down list the level number at which you wish to begin playing the game.

This is the 'Play” button — after selecting a level number from the drop down list contained in
the level selection baox, clicking this button will begin a new game

3} This is the ‘Instructions’ button — clicking this button will open a new form that displays
instructions on how to play the game,

2]

GCE Computing 111 of 125

2.2.7 = Instructions screen

Thiis is the instructions screen of the Snake program. Each object that ean be interacted with has a
corresponding adjacent numbered triangle, with its function explained below.

INSTRUCTIONS

click The P
"

wilars of the gama

1} This is the level selection box — click on the arrow at the end of the box to select from a
drop-down list the level number at which you wish to begin playing the game.

2} This is the ‘Play’ button — after selecting a level number from the drop down list contained in
the level selection box, clicking this button will bagin a new game

3} This Is the ‘Back’ button — clicking this button will return you to the Initlal level selection
screen

112 of 125 GCE Computing

3 — How to play the game

3.1 - Level selection

To play snake, first you must select a difficulty level from the drop-down box [1) and click the PLAY
button (2} on the initial level selection screen. The difficulty level determines the speed at which
your snake moves, and the length at which 1t starts, The snake starts at a length of 30 ‘bits’, and
increases in length by 6 “bits” every time you reach a new level,

PLLALLLED

GCE Computing 113 of 125

3.2 - Controlling the snake

Control the movement of the snake's head using the directional arrows on the keyboard —if you
press the up directional arrow, the snake’s head will move upwards, if you press the right directional
arrow, it will move right etc, However, you can only move right or left when the snake is moving up
or down, and you can only move up or down when the snake is moving right or left. The snake’s
body will follow the path of the head. The game screen is displayed on the next page.

Each object on the game screen is here identified with a numbered triangle.

1 NEREEN |
I TERI AR

1} This is the level display. It displays the number of the level that you are currently playing
2} Thisis a food item
1) This is the snake

114 of 125 GCE Computing

3.3 - Level progression

The objective of the game is to progress through as many levels as possible, by directing the snake's
head onto food items that will appear as pink blocks on the sereen. Every five food items eaten will
increase the level number (displayed at the top of the game screen), thus increasing the snake's
speed and length. However, at levels above level 10 the speed remains constant, but the snake will
continue to increase in length,

This shows, on level 10, the snake’s head coming into contact with a food item, This causes the
snake to ‘eat’ the food, and another food em will then be placed on the screan,

i
:
:

LT ETATE

RN EEEE

GCE Computing 115 of 125

This shows the snake after it has progressed to the next level, having eating five food items. Note |
increased length,

STAN RN R AN NN NN

Oaaa sl b iidl

116 of 125 GCE Computing

The game will end if the snake's head collides with its own body or with the borders of the game

screen, as shown below, If this occurs, click the OK button (1) and you will be returned to the ini
level selection screen.

This shows the snake colliding with border of game screen

S P L R L N) Y T R L]

[
o
o
1
I8
[
=
=
=
-
|
-
-
o
-
o

GCE Computing 117 of 125

This shows the snake colliding with its own body

]

::l_.l_l__l_lJ_'_l_l_H

N RN RSN Z':I

118 of 125 GCE Computing

4 - Troubleshooting

Snake [s not a program that has error messages, and as such there are no error message issues to be
covered here. There are a few issues that may arise, and | shall attempt to cover them and their

soluthons in the table below.

4.1 - Download and installation issues

Issue

Urable to access website

Program will not save

Possible cause

Solution

1. You may not be
connected to the intermet

Contact your internet service
provider for assistance

2. The web site
www vhgamer.com may be

having technical problems

You may have insufficient

Try accessing the website at a
later timme

Engure that you have enough hard

4.2 — General issues

Issue

hard disk space drive space to accommodate the
program. A minimum of 1
megabyte is required
Possible cause Solution

I"mgram will hot open

1. You may not have the
appropriate operating
system necessary 1o run
the Snake game

2. ¥ou may not have the
‘Wisual Basic 6 service pack

Ensure that you install and run Snake on
a computer with Microsoft Windows 85
of later operating system

Download the service pack from the
Following websibe:

reached

that is necessary to rin wewwe support.microsoft.com/khy/ 290887

) the Snake game
Snake appears to slow down | 1. You may not have Ensure that you install and run Snake on
when higher levels are sufficlent RAM a computer with at krast 512 megabytes

of RAM

2. Yau may not have
sufficlent processing
power

Ensure that you install and run Snake on
a computer with at keast 1 processor
with a clock rate of 1.3 GHz or more

3. If the above two causes
do not apply, then this
problem may be the
result of a known issue
with this version of Snake,
that has no salution at
present

MA

GCE Computing

119 of 125

5 - Glossary

browser that, when selectad, allows you to enter a web

performs its most basic operations — in general the
greater the clock rate of the processor, the Faster the
computer can perform processing tasks such as those

The buttens en the keyboard that appear as four arrows

An ub}et with an arrow that can be clicked on, showing a

short for gigahertz. It is unit used in measurement of
freguency. One GHz 15 equivalent Lo ane billion cycles per

A storage device used to store data on your computer

& nurnber that indicates your progress through the game,
Level numbers are incremented every time you direct the
snake onto five food iterns. The higher the level number,

A unit used in measurement of data. Is roughly equivalent

programs, such as Snake. Snake |s only compatible with

The componeant of your computer that carries out the
instructions of programs that you run, such as the Snake

Short for random access memaory. It is the memory of
your computer that is used to store data for processing by
the processor, In general, an ineréase in the amount of
RAM in a computer leads to an increase in the computer’s

Snake bits are the individual green blocks that make up

| Web browser

Term Cefinition
Address bar The harizontal bar displayed at the top of y
site address with the keyboard
Clock rate The rate in cycles per second at which a computer
involved In the running of the Snake game
Directional arrows
as helow
Vi i
| Drop-down list arrc
list with items that can be selected]
Foarm A screen used for viewing andfor inputting data
GHz
second
Hard disk
Level
the greater the difficulty of the game
megabytes
| to one millien bytes
.| Operating system The software that enables your computer 1o run
Windows operating systems
Processor
program
RAM
perfarmance
Snake bits
the snake's head and body
Visual basic service pack

Refers to the flles that are required by all applications
that are created with Visual Basic 6.0, such as Snake

A program used to browse web sites on the internet

120 of 125

GCE Computing

Section 5 = Evaluation

Page Il.ﬂﬂ

After having completed the system, | can conclude that all but one of the reguirements decided
upen in the refined design objectives on page 27 have been met. The requirement that has not been
met is the output requirement 4.b, which is that: “The positions of each snake bit will be displayed in
real time”, | refer to the reguirements as those laid in these refined design objectives, as opposed to
those in the original requiremaents specification on page 14, because the design objectives are
essentially the same as the requirements of the specification, except they contain additional
requirements that were decided upon as a result of further user consultation.

The requirement 4.b has not been met due to a lack of foresight when designing the way in
which the snake was to move, It never occurred to me, when designing the algorithms, that the
program could cause a modern computer any difficulty In 1ts execution. Thus, | did not seek to find
the most efficlent solution to the problem of moving the snake, but simply a solution that would

work.

iy users, after having accepted the program’s shortcomings in failing to meet this one
requirement, unanimously agreed that the program succeeds in meeting all other requiremeants. This
can be seen from their qguestionnaire responses to beta testing, outlined on page B8,

I shall now discuss each objective of the requirements specification and explain why each of
them, apart from 4.b, was successfully met.

Regulrement

Explanation of why the requirement was met

1.a) The screen size is large =
(900x000 pixels)

This requirement was met because the screen size of the snake game screen
was, as plannad, 900x900 pixels. All sewven of my users can be seen to have
testified to this fact in their response to question 12 of the user testing
questionnaire on page 38

1.k) The eolour of the snake will -
be: green

":L_c:| The colour of the food will be:
pink

The colour of the snake was indeed green, as can be seen from many of the
sereen shots from page 58 onwards

The colour of the food was indeed pink, as can be seen from many of the
screen shots from page 58 onwards

1.d) The colour of the background
will be: black

The colour of the background was indeed black, as can be seen from many
of the screen shots from page 58 onwards

1.2} The colour of the background
for the menu screens will be: dark
Brey

The colour of the background was indeed dark grey, as can be seen from the
screen shots 47 and 48 on pages B2 and 83

-_1.f] Each "bit’ of the snake will be
10x10 pivels in size

Each snake bit was 10x10 pixels in size, as agreed with the users. The same
sized objects that | showed my users [as seen on page 10) were then used in
the final program

1.2) The snake should start ata
kength of thirty ‘bits’ on level 1

This can be seen to be true from the result of level selection testing, as
evidenced in screenshot 1 on page 88

f.h] The snake’s head should
initially be facing right

This was true as the snake abwvays moved right as a new game began,

GCE Computing

121 of 125

Page | 101

1.i) Each food item will be 10x10
pixels in size

Each snake bit was 1010 pixels in size, a5 agreed with the users. The same
sized objects that | showed my users (as seen on page 10} were then used in
the final program

1.]) The time interval batween
each snake movement at level 1
will be 100 milliseconds

This requirement was met, as is seen in screenshot 44 on page 79 that
demonstrates the timer interval on level 1

1.k} There s no pre-defined limit
on the number of levels to be
played through (instead this Is
lmited by the skill of the playar]

This requireme'nt was met, as can be seen as a result of level advancement
testing, as evidenced in screenshot 46 on page 81

2.a) The player is able to choose
the level at which hefshe begins
the game from (between 1 and 10)
with the use of a drop down list
and combo box on both the initial
meny screen and the instructions
screen

This requirement was met, as can be seen from the level selection testing on
page 51, the results of which are demonstrated in screenshots 1 to 10 from
page 58 onwards

]‘| Z.b) The player is able to control
#| the direction that the head is
facing with the use of the
directional keys on a keyboard

This reguirement was met, as can be seen from the movement of snake
testing on page 52, the results of which are demonstrated in screenshots 11
to 22 from page 63 onwards

2.c) The player will not be able to
make the snake go back an itself
by pressing left when the head is
facing right, or up when the head
is facing down etc,

Thiis requirernent was met, as can be 's:een fram the movement of snake
testing on page 52, the results of which are demonstrated in screenshots 11
to 22 fram page 63 onwards

Z.d} The player will be able to
wigw an instructlons screen that
opens In a new form by clicking &
command button that is on the
initial menu screen

This requirement was met, as can be seen from the instructions display
testing on p57, the results of which are displayed in screenshot 47 on page
82

2.8} The player will be able to go
back to the initial level selaction
screen from the instructions
screen with the use of a command
buttan

Thlslrequirement was met, as can be seen from the returning to initial menu
screen from the instructions screen testing on pS7, the results of which are
displayed in screanshot 48 on page 83

i.a) The coordinates of the snake's
head need to be continually
incremented by 10 pixels in the
direction that the snake's head is
facing at a time Interval that is

determined by the level chasen

This requirement was met, as can be seen from the movement of snake
testing on page 54, the results of which are demonstrated in screenshot 28
on page 71

3.b) Each shake bit behind the
| head must be incremented by 10
pixels in the direction that the
snake's head was facing on a
previous move (with the move
number cormesponding to the
snake bit's distance from the head,
such that the snake's body will
follow the path of the head)

This requirement was met, as can be seen from the movement of snake
testing on page 54, the results of which are demonstrated in screenshots 23
to 28 from page 69 onwards

122 of 125

GCE Computing

Page | 102

3.c) It muwst be determined with

each movement whether the

snake’s head collides into its body,
in which cage the game should and

This requirement was mel, as can ba seen frarm the colllsion with snake
detection testing on page 55, the results of which are demonstrated in
screenshots 38 to 39 from page 76 onwards

3.d) It must be determined with
each movemnent whether the
snake’s head collides into the
barders of the game screen, in
which case the game should end

This requiremeant wWas met, as can be seen from the collision with walls
detaction testing on page 54, the results of which are demonstrated in
screenshots 29 to 37 from page 72 onwards

3.e) It must be determined with
each moverment whether the
snake’'s head collides into a food
iterm, Inwhich case the a the food
itern will be randomly mowved to
another position on the game
SCreen

This requirement was met, as can be seen from the collision with food
detection testing (with no level advancement) on page 55, the results of
which are demanstrated in screenshots 40 to 41 from page 77 onwards

3. The system must record the
amount of food items eaten, and
increment the level number every
time 5 food items are eaten
'Ig-:l The time intervals betwean
each movement of the snake must
be decreased by 10 milllseconds
every time the level number is
increased

This reguirement was met, as can be seen from the collision with food
detection testing (with level advancement] on page 56, the results of which
are demonstrated in screenshots 42 to 43 from page 78 onwards

This requirement was méE,' as can be sean from the collision with faod
detection testing (with level advancement] on page 56, the results of which
are demonstrated in screenshots 44 to 45 from page 79 onwards

3.h) At each new level the length
of the snake must be increased by
6 bits

4.a) The current level number will
be displayed

This requirernent was met, as can be seen from the collision with food
detection testing (with level advancement) on page 56, the results of which
are demonstrated in screenshots 42 to 43 from page 78 onwards

This requirermnent was met, as can be seen in the many in-game screenshots
displayed on page 58 onwards

4.b) The positions of each snake bit
will be displayed in real time

Thizs objective was not fully met, due to the inefficiency of the algorithm that
controls snake movemant.

The poor performance of the program when run was revealed too late in the
development process to implement a new method of snake movement, as it
would have led to a complete re-design of the algorithms controlling snake
mavement and those controlling snake length. Instead, a partial fix of the
problem was implemented, by incorporating the CheckSnakeCollision
subroutine into the MoveSnakeBody subrouting, whilst swapping the i's and
k's In the snake collision detection algorithm around so that thers were kess
loops being executed by the program.

The method of implementing a complete fix to this issue will be discussed in
the final section of the project concerning desirable extensions.

4.c) The position of the food item
will he displayed

This requirement was met, as can be seen in the many in-game screenshots
displayed on page 58 onwards

4.d) Instructions an how to select
a level be displayed on the initial
level selection screen

This requirement was met, as can be seen from screenshot 48, on page B3

4.2 Instructions on how to play

the game will be displayed in a

| new farm when the Instructions
'_cammnnli button is clicked

This requirement was met, as can be seen from the instructions display
testing on p57, the results of which are displayed in screenshot 47 on page
82

GCE Computing

123 of 125

F‘a_;__e__! 103

Part 2 — An evaluation of the yser’s response to the system

In erder to clarify the extent of satisfaction that my user group has with regards to the finished
program, | have designed a new guestionnaire intended to complement the guestionnalre
complated by my users in the user testing section on page 87, and fully gauge the level to which the
final programme Is accepted by my users and therefore the extent to which the prograim is ‘user-
friendly’. The questionnaire, and the frequency of each of my users' responses as indicated in
parentheses, are as follows.

Cuestion Answer /M) Camment

Were the menus clear? ¥ {7 Mone
N (0)

\Was the an seraen hielp clear? ¥ (7) Mone
M {0) _

Could the system be easily used? ¥ {7 Momne
b {0}

i Are you satisfied with the ¥(7) Mone

completed program as a fulfilment | N (0)

of the design requirements,

desplte the fault with the snake's

movement that becomes apparent

at the higher levels?

These are the issues highlighted by | ¥ (7) None
user testing that | sought to M {0)
resolve:

1} The player should be
informed that there are
maore levels beyond level
10

2) It should say at the
beginning of the
instructions screen how
you are to control the

) snake
3} The instructions form

appears at a different
place an the screen from
the inftial menu screen — it
should instead appear in
the same place

Are you satisfied that these issues

have been fully resolved?

Are there any other issues that you | ¥ [0) MNone

| feel remain ta be ficed? M7

In both this and the questionnaire on page 87, the users’ responses to the completed program have
been very positive. A few issues were nitially highlighted by my users, but thaey are now satisfied
that these issues have baen resolved, and they have each agreed that the system adequately fulfils
the design requirements- despite the fault with the snake’s movernent that becomes apparent at
the higher levels. Therefore this fault remains only as a consideration in any desirable extensions
that could be made to the system In future. This shall be discussed in the final part of the project.

124 of 125 GCE Computing

Page | 104
Part 3 - Desirabl

In evaluation of the system, | shall list the good and bad points of the completed program and note
its limitations, and how thess may be resolved with possible extensions.

Good points

= As concluded from the review of my users feedback from the guestionnaire on the previous
page, the system can be deemed ‘user-friendly’

+ Apart from the slow-down that hinders the later levels, the program functions as desired in
the initial requirements specification — as testified to by my users in the questionnaire on
the previous page and the user testing feedback presented on page 87

» The look of the completed system closely matched that of the designs, and was a subject of
positive respanse from my users

» The instructions were deemed by my users to be clear

* Mo bugs exist in the system, according to my alpha testing on page 37 and my users’ beta
testing W\

» The game had an appropriate difficulty (was neither too difficult nor too easy), as stated by
my wsers in their feedback

» Al buttons/combo boxes work as desired

Bad paints
» The only limitation of the program is its inability to maintain a constant snake speed as the
level number increases above 15, due to the inefficiency of the code controlling snake
maovement. This could be resolved in a new verston of the program, where the snake’s
mavement and all related functions are controlled In a different way

Possible extensions

The extension that would need to be implemented In a later iteration of the program |5 a new, more
efficient method of maving the snake bits across the screen. In the present version, the program
loops through and positions every individual snake bit in turn, when a far more efficient method that
would have produced the same results would have been to simply move the head and final snake bit
of the snake.

As the program already mowves the snake’s head independently of the following snake bits, a
good method of changing the algorithm contralling smake movement would be to move only the
final snake bit in the CheckSnakeCollislonAndMoveSnakeBody subrouting, and to move it to the
space that is left behind the snake's head when that has been moved. This would drastically
decrease the amount of loops carried out by the program, and | believe that this would remove the
present issue the snake appearing to slow down when It gets very long.

GCE Computing 125 of 125

