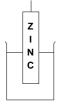
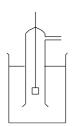

ELECTROCHEMISTRY


REDOX	Reduction	gain of electrons	$Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu_{(s)}$
	Oxidation	removal of electrons	$Zn_{(s)} \longrightarrow Zn^{2+}_{(aq)} + 2e^{-}$

- **HALF CELLS** these are systems involving oxidation or reduction
 - there are several types

METALS IN CONTACT WITH SOLUTIONS OF THEIR IONS



Reaction $Cu^{2+}(aq) + 2e^{-} \iff Cu(s)$ ElectrodecopperSolution $Cu^{2+}(aq)$ (1M) - 1M copper sulphate solutionPotential+ 0.34V


Reaction $Zn^{2+}(aq) + 2e^{-} \iff Zn(s)$ ElectrodezincSolution $Zn^{2+}(aq)$ (1M) - 1M zinc sulphate solutionPotential- 0.76V

GASES IN CONTACT WITH SOLUTIONS OF THEIR IONS

Reaction	2H⁺(aq) + 2e [−]
Electrode	platinum - you need a metal to get electrons in and out
Solution	H+(aq) (1M) - 1M hydrochloric acid or 0.5M sulphuric acid
Gas	hydrogen (1 atm pressure)
Potential	0.00V
IMPORTANCE	This half cell is known as
	THE STANDARD HYDROGEN ELECTRODE

SOLUTIONS OF IONS IN TWO DIFFERENT OXIDATION STATES

Reaction $Fe^{3+}(aq) + e^{-} \iff Fe^{2+}(aq)$ Electrodeplatinum - you need a metal to get electrons in and outSolution $Fe^{3+}(aq)$ (1M) and $Fe^{2+}(aq)$ (1M)Potential+ 0.77 V

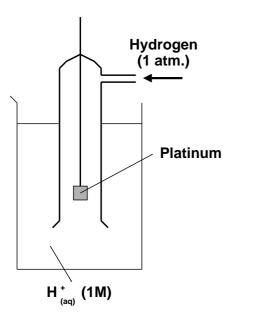
SOLUTIONS OF OXIDISING AGENTS IN ACID SOLUTION

]	P L A T I N U M	

Reaction $MnO_4^- + 8H^+(aq) + 5e^- \longrightarrow Mn^{2+}(aq) + 4H_2O(I)$ Electrodeplatinum - you need a metal to get electrons in and outSolution $MnO_4^-(aq)$ (1M) and $Mn^{2+}(aq)$ (1M) and $H^+(aq)$ Potential+ 1.52 V

2815 Electrochemistry CELL POTENTIAL each electrode / electrolyte combination has its own half-reaction

- *Measurement* it is impossible to measure the potential of a single electrode BUT...
 - you can measure the potential difference between two electrodes
 - value is measured relative to a standard reference cell under standard conditions


STANDARD ELECTRODE POTENTIAL

The potential difference of a cell when the electrode is connected to the standard hydrogen electrode under standard conditions

The value is affected by ...

- temperature
- pressure of any gases
- solution concentration

The ultimate reference is the STANDARD HYDROGEN ELECTRODE.

CONDITIONS

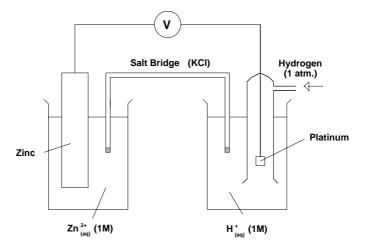
temperature	298K
solution conc	1 mol dm ⁻³ with respect to H ⁺
hydrogen	1 atmosphere pressure

WHY USE PLATINUM? - you need an inert metal to get the electrons in/out

> Standard hydrogen electrode $E^{\circ} = 0.00V$

However, as it is difficult to set up, **secondary standards** are used.

Secondary


2

standards The standard hydrogen electrode (S.H.E.) is difficult to set up so it is easier to choose a more convenient secondary standard which has been calibrated against the S.H.E.

- the calomel electrode contains Hg₂Cl₂
 - it has a standard electrode potential of +0.27V
 - is used as the left hand electrode to determine the electrode potential of an unknown
 - to obtain the E° value of the unknown half cell ADD 0.27V to the measured cell potential

Experimental determination of E°

In the diagram below the standard hydrogen electrode is shown coupled up to a zinc half cell. The **voltmeter reading gives the standard electrode potential of the zinc cell**.

salt bridge filled with saturated potassium chloride solution it enables the circuit to be completed

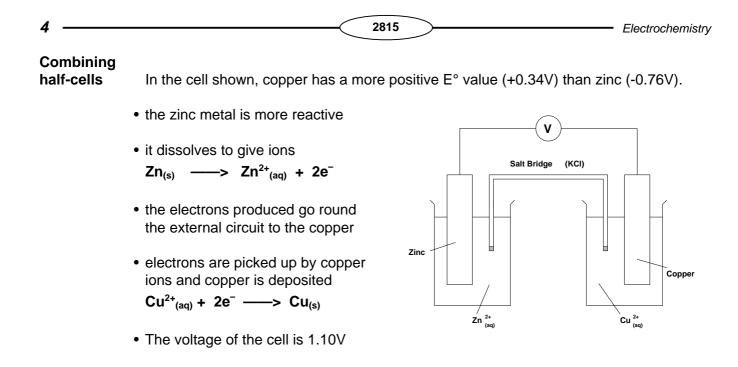
THE ELECTROCHEMICAL SERIES

Layout If species are arranged in order of their standard electrode potentials we get a series that tells us how good each substance is (as an oxidising agent)at picking up electrons.

All equations are written as reduction processes ... i.e. gaining electrons

e.g.	АІ ³⁺ _(аq) + Зе ⁻		Al _(s)	$E^{\circ} = -1.66V$
	$CI_{2(g)} + 2e^{-}$	$ \longrightarrow$	2 <i>CI</i> ⁻ _(aq)	$E^\circ = +1.36V$

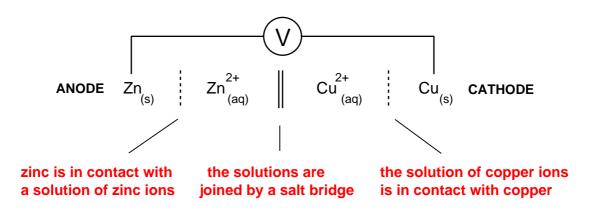
The species with the more positive potential (E° value) will oxidise one (i.e. reverse the equation) with a lower E° value.


- USE of E°
 Can be used to predict the feasibility (likelihood) of redox and cell reactions.
 In theory ANY REDOX REACTION WITH A POSITIVE E° VALUE WILL WORK.
 - In practice, it will proceed if the E° value of the reaction is greater than + 0.40V.

An equation with a more positive E° value will reverse one which is less positive.

Example What will happen if an $Sn_{(s)} / Sn^{2+}_{(aq)}$ cell and a $Cu_{(s)} Cu^{2+}_{(aq)}$ cell are connected?

- Write out the appropriate equations $Cu^{2+}_{(aq)} + 2e^{-}$ $Cu_{(s)}$; $E^{\circ} = +0.34V$ $Sn^{2+}_{(aq)} + 2e^{-}$ $Sn_{(s)}$; $E^{\circ} = -0.14V$
- the half reaction with the more positive E° value is more likely to work
- it gets the electrons it needs by reversing the half reaction with the lower E° value
- therefore $Cu^{2+}_{(aq)} \longrightarrow Cu_{(s)}$ and $Sn_{(s)} \longrightarrow Sn^{2+}_{(aq)}$
- the overall reaction is $Cu^{2+}{}_{(aq)} + Sn_{(s)} \longrightarrow Sn^{2+}{}_{(aq)} + Cu_{(s)}$
- the cell voltage will be the difference in E° values ... (+0.34) (-0.14) = +0.48V


3

Cell

diagrams These give a diagrammatic representation of what is happening in a cell.

• Place the cell with the more positive E° value on the RHS of the diagram.

- Drawing it out as shown indicates that ...
- the cell reaction goes from left to right
- · the electrons go round the external circuit from left to right
- the cell voltage is E°(RHS) E°(LHS). In this way it must be positive
- oxidation takes place at the anode and reduction at the cathode

Conclusion The reaction(s) will proceed from left to right

OX idation	Zn _(s) —>	Zn ²⁺ _(aq) + 2e ⁻	at the ANODE
RED uction	Cu ²⁺ _(aq) + 2e ⁻ >	Cu _(s)	at the CATHODE
Electrons	Go from the anode to the ca	thode via the external c	sircuit
Cell reaction	Zn _(s) + Cu ²⁺ _(aq) >	$Zn^{2+}{}_{(aq)}$ + $Cu_{(s)}$	
Cell voltage	E°(RHS) - E°(LHS) =	0.34V - (-0.76V)	= 1.10V

Electrochemistry	2815 5			
Example	Will this reaction occur spontaneously?	$Sn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Sn^{2+}_{(aq)} + Cu_{(s)}$		
Method 1	 Write out the appropriate equations as reductions with their E° values The reaction which takes place will invo 	$Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu_{(s)}$; $E^{\circ} = +0.34V$ $Sn^{2+}_{(aq)} + 2e^{-} \longrightarrow Sn_{(s)}$; $E^{\circ} = -0.14V$ Ive the more positive one reversing the other		
	<i>i.e.</i> $Cu^{2+}_{(aq)} \longrightarrow Cu_{(s)}$ and	$Sn_{(s)} \longrightarrow Sn^{2+}_{(aq)}$		
	 The cell voltage will be the difference in E° values and will be positive (+0.34) - (-0.14) If this is the equation you want then it will be spontaneous If it is the opposite equation (i.e. going the other way) it will not be spontaneous 			
Method 2	 Split equation into two half equations 	$Cu^{2+}_{(aq)} + 2e^{-} \longrightarrow Cu_{(s)}$ $Sn_{(s)} \longrightarrow Sn^{2+}_{(aq)} + 2e^{-}$		
	 Find the electrode potentials and the usual equations 	$Cu^{2+}_{(aq)} + 2e^{-} \implies Cu_{(s)}$; $E^{\circ} = +0.34V$ $Sn^{2+}_{(aq)} + 2e^{-} \implies Sn_{(s)}$; $E^{\circ} = -0.14V$		
	 Reverse one equation and its sign 	$Sn_{(s)}$ > $Sn^{2+}_{(aq)}$ + $2e^{-}$; E° = +0.14V		
	Combine the two half equations	$Sn_{(s)} + Cu^{2+}_{(aq)} \longrightarrow Sn^{2+}_{(aq)} + Cu_{(s)}$		
	• Add the two numerical values	(+0.34V) + (+0.14V) = +0.48V		

• if the value is positive the reaction will be spontaneous

NOTE: DOUBLING AN EQUATION DOES NOT DOUBLE THE E° VALUE

 $\begin{array}{ll} \frac{1}{2}CI_{2(g)}+e^{-} & \underset{(aq)}{\longrightarrow} & E^{\circ}=\pm1.36V\\ CI_{2(g)}+2e^{-} & \underset{(aq)}{\longrightarrow} & 2CI^{-}_{(aq)} & E^{\circ}=\pm1.36V \end{array}$

For those that work, calculate the cell voltage.

Q.2 Explain what reactions, if any, will occur if aqueous solutions of KCl, KBr and KI are treated with; a) acidified $KMnO_4$ b) acidified $K_2Cr_2O_7$.

2815

Q.3 Using E° values, explain why zinc reacts with dilute acids to produce hydrogen gas but silver doesn't

.Q.4 Construct a cell diagram for a cell made up from Ni^{2+}/Ni and Zn^{2+}/Zn . Work out the overall reaction and calculate the potential difference of the cell.

Q.5 Why is hydrochloric acid not used to acidify potassium manganate(VII)?

Q.6 Explain why the chemistry of copper(I) in aqueous solution is limited. The following half equations will help. Name the overall process which takes place.

 $\begin{array}{ccc} Cu^{+}_{(aq)}+e^{-} & & & \\ \hline & Cu_{(s)} & & E^{\circ}= \,+\,0.52V \\ Cu^{2+}_{(aq)}+e^{-} & & & \\ \hline & Cu^{+}_{(aq)} & & E^{\circ}= \,+\,0.15V \end{array}$

6

THE ELECTROCHEMICAL SERIES

			\mathbf{E}° / \mathbf{V}	
$F_{2(g)}+2e^{-}$	<u> </u>	2F ⁻ _{(aq}	+2.87	•
$H_2O_{2(aq)} + 2H^+_{(aq)} + 2e^-$	<u> </u>	$2H_2O_{(l)}$	+1.77	
$MnO_{4^{-}(aq)} + 8H^{+}_{(aq)} + 5e^{-}$	<u> </u>	$Mn^{2+}{}_{\!(aq)} + 4H_2O_{(l)}$	+1.52	
$PbO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-}$	<u> </u>	$Pb^{2+}_{(aq)} + 2H_2O_{(l)}$	+1.47	
$Ce^{4+}{}_{(aq)} + e^{-}$	<u> </u>	Ce ³⁺ (aq)	+1.45	reaction is more
$Cl_{2(g)} + 2e^{-}$	<u> </u>	2Cl ⁻ _(aq)	+1.36	likely to go right
$Cr_2O_7^{2-}(aq) + I4H^+(aq) + 6e^-$	<u> </u>	$2Cr^{3+}_{(aq)} + 7H_2O_{(l)}$	+1.33	
$MnO_{2(s)} + 4H^{+}_{(aq)} + 2e^{-}$	<u> </u>	$Mn^{2+}{}_{(aq)} \ + \ 2H_2O_{(l)}$	+1.23	LH species better oxidising agents
$Br_{2(1)} + 2e^{-1}$	<u> </u>	2Br _(aq)	+1.07	
$Ag^{+}_{(aq)} + e^{-}$		Ag _(s)	+0.80	RH species weaker
$Fe^{3+}_{(aq)} + e^{-}$	<u>`</u>	Fe ²⁺ (aq)	+0.77	reducing agents
$O_{2(g)} + 2H^+_{(aq)} + 2e^-$		$H_2O_{2(l)}$	+0.68	
$I_{2(s)}+2e^{-}$		2I ⁻ (aq)	+0.54	RH species are
$Cu^{+}_{(aq)} + e^{-}$	$\stackrel{\backslash}{\longrightarrow}$	Cu _(s)	+0.52	harder to oxidise
$Cu^{2+}_{(aq)} + 2e^{-}$	$\stackrel{\backslash}{\longrightarrow}$	Cu _(s)	+0.34	
$Cu^{2+}_{(aq)} + e^{-}$	<u>`</u>	Cu ⁺ _(aq)	+0.15	LH species are easier to reduce
${\rm Sn^{4+}}_{(aq)} + 2e^{-}$	<u>`</u>	Sn ²⁺ (aq)	+0.15	
2H⁺ _(aq) + 2e [−]	``	H _{2(g)}	0.00	
$Pb^{2+}{}_{(aq)} + 2e^{-}$	``	Pb _(s)	-0.13	
	``	Sn _(s)	-0.14	
$Ni^{2+}_{(aq)} + 2e^{-}$	``	Ni _(s)	-0.25	reactivity of
$Cr^{3+}_{(aq)} + e^{-}$		Cr ²⁺ (aq)	-0.41	metals decreases
$Fe^{2+}_{(aq)} + 2e^{-}$		Fe _(s)	-0.44	
$Zn^{2+}{}_{(aq)} + 2e^{-}$		Zn _(s)	-0.76	reactivity of
$Al^{3+}_{(aq)} + 3e^{-}$		$Al_{(s)}$	-1.66	non-metals increases
$Mg^{2+}_{(aq)} + 2e^{-}$	<u>`</u>	Mg _(s)	-2.38	
$Na^+_{(aq)} + e^-$	•	Na _(s)	-2.71	
$Ca^{2+}_{(aq)} + 2e^{-}$		Ca _(s)	-2.87	
$K^{+}_{(aq)} + e^{-}$		K _(s)	-2.92	-
	``			

IMPORTANT WARNING

Limitation of using E° to predict the feasibility of a reaction

- KineticStandard electrode potentials are not always accurate in their predictions.
They indicate if a reaction is possible but cannot say what the rate will be.
Some reactions will not be effective as they are too slow.
- **Conditions** Because **TEMPERATURE** and **CONCENTRATION** affect the value of a standard electrode potential any variation can also affect the probability of a reaction taking place. Concentrations do change during a reaction.

Apply le Chatelier's principle to predict the change in E°

7