ALCOHOLS

Classification

Aliphatic	named	formula C _n H _{2n+1} OH - provided to as substituted alkanes by removing there the position of the OH is given	g the final -e a	and adding -ol		1-2-ol
Aromatic		atic alcohols (or phenols) the OH n on a side chain of a benzene ring b		•		ring
	Q.1	<i>Which of the structures is/are</i>	OH	CH ₃ OH	CH_OH	

Structural differences

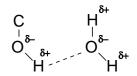
- alcohols are classified according to the environment of the OH functional group
 - chemical behaviour, especially with oxidation, often depends on the structural type

Physical properties

Boiling point Increases with molecular size due to increased van der Waals' forces. Alcohols have higher boiling points than similar molecular mass alkanes due to the added presence of inter-molecular hydrogen bonding. More energy is required to separate the molecules.

		M_r	bp / °C
ethanol	C_2H_5OH	46	+78
propane	C_3H_8	44	-42

classified as phenols?


Boiling point also increases for "straight" chain isomers. Greater branching = lower inter-molecular forces.

intermolecular hydrogen bonding in alcohols

		bp / °C
butan-1-ol	CH ₃ CH ₂ CH ₂ CH ₂ OH	118
butan-2-ol	CH ₃ CH ₂ CH(OH)CH ₃	100
2-methylpropan-2-ol	(CH ₃) ₃ COH	83

Solubility Low molecular mass alcohols are **miscible with water** due to **hydrogen bonding** between the two molecules.

Alcohols are themselves very good solvents, being able to dissolve a large number of organic molecules.

intermolecular hydrogen bonding with water

1

PREPARATION OF ALCOHOLS

2812

Laboratory	 from haloalkanes 	- reflux with aqueous sodium or potassium hydroxide.
	 from aldehydes 	 reduction with sodium tetrahydridoborate(III) - NaBH₄.
	 from alkenes 	- acid catalysed hydration using concentrated sulphuric acid.

Reagent(s)	GLUCOSE - from hydrolysis of starch
Conditions	yeast warm but no higher than 37°C
Equation	$C_6H_{12}O_6 \longrightarrow 2 C_2H_5OH + 2 CO_2$

Direct hydration

Reagent(s)	ETHENE - from cracking of fractions from distilled crude oil
Conditions	catalyst - phosphoric acid high temperature and pressure
Equation	$C_2H_4 + H_2O \implies C_2H_5OH$

Q.2 List some advantages and disadvantages of the two major industrial methods.

Fermentatic	on advantag	ge(s) • •
	disadvantag	ue(s) • • •
Hydration	advantage	e(s) • • •
	disadvantag	e(s) • •
Uses	ethanol	• •
	methanol	 added to petrol to improve combustion properties of unleaded petrol solvent used as a feedstock for important industrial processes fuel

	F		١.
			,
2			

Alcohols		2812
	PROPERTIES	
General	-	on the oxygen atom of alcohols make them Lewis Bases (lone pair donors). • pick up protons • behave as nucleophiles.
Elimination	Reagent Conditions Product Equation Mechanism	conc. sulphuric acid (H ₂ SO ₄) or conc. phosphoric acid (H ₃ PO ₄) reflux 180°C alkene e.g. $C_2H_5OH_{(I)}$ ———> $CH_2 = CH_{2(g)} + H_2O_{(I)}$
н—	н н (*н* (С—С—О́н — н н	$ \xrightarrow{H} H \xrightarrow{H} \xrightarrow{H}$
	Ster Ster Ster	b 2 loss of a water molecule to generate a carbocation
	Note 1	There must be a hydrogen atom on a carbon atom adjacent the carbon with the OH on it
	Note 2	Alcohols with the OH in the middle of a chain can have two ways of losing water. In Step 3 of the mechanism, a proton can be lost from either side of the carbocation. This can give a mixture of alkenes from unsymmetrical alcohols H = H = H = H = H = H = H = H = H = H =
Elimination Method 2	Conditions	Pass vapour over a heated catalyst of pumice or aluminium oxide
Q.3		reacts with concentrated sulphuric acid to give <u>THREE</u> isomeric alkenes. hey and how are they formed?

Oxidation of Alcohols

Provides a way of differentiating between primary, secondary and tertiary alcohols The usual reagents are acidified potassium dichromate(VI) or potassium manganate(VII)

2812

Primary Easily oxidised to aldehydes and then to carboxylic acids.

e.g. $CH_3CH_2OH_{(1)}$ + [O] ----> $CH_3CHO_{(1)}$ + $H_2O_{(1)}$

then $CH_3CHO_{(1)} + [O] \longrightarrow CH_3COOH_{(1)}$

- it is essential to distil off the aldehyde before it gets oxidised to the acid
- the alcohol is dripped into a warm solution of the oxidising agent acidified $K_2Cr_2O_7$
- because the aldehyde has a low boiling point no hydrogen bonding it distils off
- if it didn't distil off it would be oxidised to the equivalent carboxylic acid
- to oxidise an alcohol straight to the acid you would reflux the mixture

formula	intermolecular bonding	boiling point
C ₂ H ₅ OH	HYDROGEN BONDING	78°C
CH ₃ CHO	DIPOLE-DIPOLE	23°C
CH ₃ COOH	HYDROGEN BONDING	118°C
	C ₂ H ₅ OH CH ₃ CHO	C ₂ H ₅ OH HYDROGEN BONDING CH ₃ CHO DIPOLE-DIPOLE

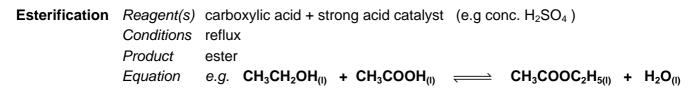
Secondary Easily oxidised to ketones

4.

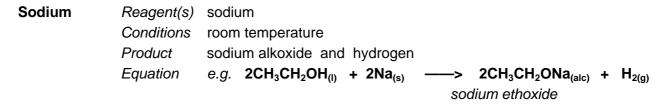
e.g. $CH_3CHOHCH_{3(1)}$ + [O] -----> $CH_3COCH_{3(1)}$ + $H_2O_{(1)}$

N.B. On prolonged treatment with a powerful oxidising agent they can be further oxidised to a mixture of acids with fewer carbon atoms than the original alcohol.

Tertiary Not oxidised under these conditions. They do break down with very vigorous oxidation


Combustion Alcohols make useful fuels

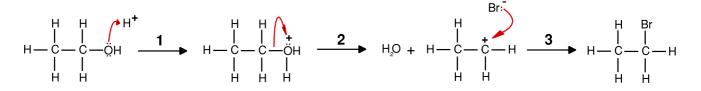
 $e.g. C_2H_5OH_{(I)} + 3O_{2(g)} - 2CO_{2(g)} + 3H_2O_{(I)}$


- have high enthalpies of combustion
- · do not contain sulphur so there is less pollution
- · can be obtained from renewable resources

Alcohols -

2812

One advantage of concentrated H_2SO_4 is that it is also a dehydrating agent and removes water as it is formed causing the equilibrium to move to the right and thus increasing the yield of ester.



Alcohols are organic chemistry's equivalent of water; water reacts with sodium to produce hydrogen and so do alcohols. The reaction is **slower with alcohols than with water**.

Alkoxides are white, ionic crystalline solids e.g. CH₃CH₂O⁻Na⁺

BrominationReagent(s)either
orconc. hydrobromic acid HBr(aq)
sodium (or potassium) bromide and conc. sulphuric acidConditionsreflux
haloalkane
Equation $c_2H_5OH_{(0)} + conc. HBr(aq) - C_2H_5Br_{(0)} + H_2O_{(0)}$

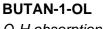
Mechanism The mechanism starts off in a similar way to the dehydration (protonation of the alcohol and loss of water) but the carbocation (carbonium ion) is attacked by a nucleophilic bromide ion in step 3.

- **Step 1** protonation of the alcohol using a lone pair on oxygen
- **Step 2** loss of a water molecule to generate a carbocation (carbonium ion)
- **Step 3** a bromide ion behaves as a nucleophile and attacks the carbocation

5

IDENTIFYING ALCOHOLS USING INFRA RED SPECTROSCOPY

2812


INFRA RED SPECTROSCOPY

Chemical bonds vibrate at different frequencies. When a infra red (IR) radiation is passed through a liquid sample of an organic molecule, some frequencies are absorbed. These correspond to the frequencies of the vibrating bonds.

Most spectra are very complex due to the large number of bonds present and each molecule produces a unique spectrum. However the presence of certain absorptions can be used to identify functional groups.

BOND	COMPOUND	ABSORBANCE	RANGE
O-H	alcohols	broad	3200 cm ⁻¹ to 3600 cm ⁻¹
O-H	carboxylic acids	medium to broad	2500 cm ⁻¹ to 3500 cm ⁻¹
C=0	ketones, aldehydes esters and acids	strong and sharp	1600 cm^{-1} to 1750 cm^{-1}
Differentiation	Compound ALCOHOL	О-Н YES	C=O NO

ALCOHOL	YES	NO
ALDEHYDE / KETONE	NO	YES
CARBOXYLIC ACID	YES	YES
ESTER	NO	YES

O-H absorption

1400

1600 1 Frequency, cm⁻¹ 1200

1000

00 3200 2800 2400 2000

1800

PROPANOIC ACID O-H absorption C=O absorption

ETHYL ETHANOATE

C=O absorption

6.

INDUSTRIAL PREPARATION OF ETHANOL - SUMMARY

FERMENTATION

- *Reagent(s)* GLUCOSE from hydrolysis of starch
- Conditions yeast warm but no higher than 37°C

- LOW ENERGY PROCESS
- USES RENEWABLE RESOURCES PLANTS
- SIMPLE EQUIPMENT

• SLOW

- PRODUCES IMPURE ETHANOL
- BATCH PROCESS

HYDRATION OF ETHENE

Reagent(s) ETHENE - from cracking of fractions from distilled crude oil

Conditions catalyst - phosphoric acid high temperature and pressure

Equation $C_2H_4 + H_2O \longrightarrow$

Х

Х

- FAST
 - PURE ETHANOL PRODUCED
 - CONTINUOUS PROCESS
- HIGH ENERGY PROCESS
 - EXPENSIVE PLANT REQUIRED
 - USES NON-RENEWABLE FOSSIL FUELS TO MAKE ETHENE

C₂H₅OH

USES

- ALCOHOLIC DRINKS
- **SOLVENT** industrial alcohol / methylated spirits (methanol is added)
- **FUEL** used as a petrol substitute in countries with limited oil reserves