SPECIMEN Advanced GCE CHEMISTRY A **F324 QP** Unit F324: Rings, Polymers and Analysis Specimen Paper Candidates answer on the question paper. Additional Materials: Data Sheet for Chemistry (Inserted) Scientific calculator Time: 1 hour 15 minutes | Candidate
Name | | | | | | | |-------------------|--|--|---------------------|--|--|--| | | | | | | | | | Centre
Number | | | Candidate
Number | | | | #### **INSTRUCTIONS TO CANDIDATES** - Write your name, Centre number and Candidate number in the boxes above. - Answer all the questions. - Use blue or black ink. Pencil may be used for graphs and diagrams only. - Read each question carefully and make sure you know what you have to do before starting your answer. - Do **not** write in the bar code. - Do **not** write outside the box bordering each page. - WRITE YOUR ANSWER TO EACH QUESTION IN THE SPACE PROVIDED. #### **INFORMATION FOR CANDIDATES** - The number of marks is given in brackets [] at the end of each question or part question. - You will be awarded marks for the quality of written communication where this is indicated in the question. - You may use a scientific calculator. - A copy of the Data Sheet for Chemistry is provided as an insert with this question paper. - You are advised to show all the steps in any calculations. - The total number of marks for this paper is 60. | FOR EXAMINER'S USE | | | | | | | |--------------------|------|------|--|--|--|--| | Qu. | Max. | Mark | | | | | | 1 | 16 | | | | | | | 2 | 13 | | | | | | | 3 | 14 | | | | | | | 4 | 10 | | | | | | | 6 | 7 | | | | | | | TOTAL | 60 | | | | | | This document consists of 10 printed pages, 2 blank pages and a Data Sheet for Chemistry. #### Answer all the questions. 1 (a) Complete the reactions by drawing structural formulae in each of the boxes provided. [1] **(b)** Compound **A**, shown below, contributes to the smell and taste of black tea and is a component in jasmine oil. - (iii) Compound A is a stereoisomer. On the structure above, - mark each feature responsible for stereoisomerism with an asterisk, *, - label each feature with the type of stereoisomerism. (iv) Outline two important factors that pharmaceutical companies need to consider when manufacturing chiral compounds for use as medicines. [Total: 16] [2] [Turn over 2 Short sections of the molecular structures of two polymers are shown below. polymer C polymer D (a) (i) Circle, on the diagrams above, the simplest repeat unit in each polymer. used to prepare polymer **D**. (ii) In the boxes below, draw the displayed formulae of the two monomers that could be [2] [2] (b) Chemists have developed degradable polymers to reduce the quantity of plastic waste being disposed of in landfill sites. Polymer D is more likely to be a 'degradable polymer' than polymer C. | Suggest two reasons why. | | |--------------------------|-----| | | | | | | | | | | | | | | [2] | **(c)** Amino acids can act as monomers in the formation of polypeptides and proteins. The structures below show three amino acids, glycine, phenylalanine and proline. Glycine, phenylalanine and proline can react together to form a mixture of tripeptides. (i) Draw the structure of the **tri**peptide formed in the order glycine, phenylalanine and proline. | (ii) | How many different tri petides could have been formed containing glycine, phenylalanine and proline? | |-------|---| | | [1] | | (iii) | The mixture of tripeptides can be analysed by using gas chromatography, coupled with mass spectrometry. | | | Summarise how each method contributes to the analysis. | | | | | | | | | | | | | | | | | | [3] | [Turn over [Total: 13] [3] - 3 Propanal, CH₃CH₂CHO, can be used in the synthesis of organic compounds. - (a) CH₃CH₂CHO reacts with NaBH₄ in a nucleophilic addition reaction. The nucleophile can be represented as a hydride ion, H⁻. A mechanism for the reaction is shown below. - (i) Add 'curly arrows' to the mechanism to show how the intermediate reacts with the water molecule in **step 2**. [2] - (ii) Draw the structure of the organic product in the box above. [1] - (iii) What is meant by the term *nucleophile*?[1] (iv) Describe, in words, exactly what is happening to the electron pairs and bonds in step 1 of the mechanism above.[3] **(b)** Compound **F** can be prepared from propanal in a two-stage synthesis. Compound **F** has the molecular formula $C_4H_8O_2$. The proton NMR spectrum of compound **F** is shown below. | | Deduce the identity of compound E . | | |-----|---|----------------------------------| | | Draw its displayed formula below. | | | Ber | nzene reacts with chlorine in the presence of a halogen carrier, such as $AICI_3$. | [1]
[Total: 14]
[Turn over | | (a) | (i) Write the equation for the reaction of benzene with chlorine. | | | | | [1] | | | (ii) How does the halogen carrier allow the reaction to take place? | ניז | | | | [1] | | | (iii) Outline a mechanism for this reaction. Include curly arrows and relevant dipoles. | | | | | | | | | | | | (iv) State the name of this mechanism. | [4] | | | | | | (b) | In contrast to benzene, the reaction of an alkene with bromine does not need a Compare the different reactivities of benzene and alkenes towards chlorine. | halogen carrier. | | | | | | 9 | | |---|----------| [1 otal: | 5 | Concentrated sulfuric acid reacts v | with many | organic | compounds, | forming | water a | as one | of th | ne | |---|-------------------------------------|-----------|---------|------------|---------|---------|--------|-------|----| | | products. | | | | | | | | | For example, sulfuric acid dehydrates ethanol by eliminating water to form ethene. $$C_2H_5OH \longrightarrow C_2H_4 + H_2O$$ In each part below, sulfuric acid is a dehydrating agent. | (a) | Sulfuric acid dehydrates methanoic acid to form a gas, G , with the same molar mass as ethene. | |-----|--| | | Suggest the identity of G and write an equation for the reaction. | | | | | | | | | | | | [2] | | (b) | Sulfuric acid dehydrates sucrose, C ₁₂ H ₂₂ O ₁₁ , to form a black solid, H . | | | Suggest the identity of H and write an equation for the reaction. | | | | | | | | | | | | [2] | | (c) | Sulfuric acid dehydrates ethane-1,2-diol to form a compound \mathbf{I} with a molar mass of 88 g mol ⁻¹ . In this reaction, two moles of ethane-1,2-diol produce one mole of \mathbf{I} and two moles of H_2O . | | | Suggest the identity of ${\bf I}.$ Write an equation for the reaction and deduce the structural formula of compound ${\bf I}.$ | [3] | | | [Total: 7] | END OF QUESTION PAPER Paper Total [60] #### Copyright Acknowledgements: #### Sources $\mathbf{Q3} \ @$ 2007, SDBS, National Institute of Industrial Science and Technology Permission to reproduce items where third-party owned material protected by copyright is included has been sought and cleared where possible. Every reasonable effort has been made by the publisher (OCR) to trace copyright holders, but if any items requiring clearance have unwittingly been included, the publisher will be pleased to make amends at the earliest opportunity. OCR is part of the Cambridge Assessment Group. Cambridge Assessment is the brand name of University of Cambridge Local Examinations Syndicate (UCLES), which is itself a department of the University of Cambridge. © OCR 2007 ### OXFORD CAMBRIDGE AND RSA EXAMINATIONS #### **Advanced GCE** CHEMISTRY F324 MS Unit F324: Rings, Polymers and Analysis **Specimen Mark Scheme** The maximum mark for this paper is **60**. SP (SLM) T12103 © OCR 2007 QAN 500/2347/0 OCR is an exempt Charity **[Turn Over** | Question
Number | Answer | Max
Mark | |--------------------|--|-------------| | 1(a)(i) | CH₃COOH ✓ | [1] | | (ii) | C ₆ H ₅ NO ₂ ✓ | [1] | | (iii) | CH₃CH₂CH₂NH₂ ✓ | [1] | | (iv) | CH ₃ COOH ✓
CH ₃ CH ₂ OH ✓ | [2] | | (v) | OH Br OH OH N OH diazo link ✓; rest of structure ✓ | [1] | | (b)(i) | C ₁₃ H ₂₀ O ₃ ✓ | [1] | | (ii) | ketone ✓ ester ✓ alkene ✓ | [3] | | (iii) | optical $\stackrel{E/Z}{\underset{\times}{}}$ optical $\stackrel{\times}{\underset{\times}{}}$ optical $\stackrel{\times}{\underset{\times}{}}$ both optical \checkmark E/Z \checkmark | [2] | | | | [4] | | Question
Number | Answer | Max
Mark | |--------------------|--|-------------| | (iv) | possible side effects of other chiral compound ✓ increased costs/difficulty of separating of isomers ✓ using bacteria within synthetic route ✓ | [2
max] | | 2(a)(i) | | | | | 1 mark for each repeat unit $\checkmark\checkmark$ | [2] | | (ii) | 1 mark for each monomer ✓✓ | [2] | | (b) | C=O absorbs radiation/breaks ✓ ester linkage hydrolysed ✓ | [2] | | (c)(i) | one amide link shown correctly ✓ glycine and phenylalanine parts shown correctly ✓ proline linked correctly ✓ | [3] | | (ii) | 6✓ | [1] | | (iii) | gas/liquid chromatograph separates the tripeptides ✓ mass spectrometer produces a distinctive fragmentation pattern ✓ identification by computer using a spectral database ✓ | [3] | | Question
Number | Answer | Max
Mark | |--------------------|--|-------------| | 3(a)(i) | $^{\mathcal{H}^{\delta+}}$ | | | | δ+
H—OδŠ | | | | CH ₃ CH ₂ —C | | | | H H 1 mark for each curly arrow ✓✓ | [2] | | (ii) | OH
CH ₃ CH ₂ —C | | | | H H | [1] | | (iii) | electron pair donor ✓ | [1] | | (iv) | electron pair on H¯attracted to δ + carbon forming a dative covalent bond \checkmark the double/ π electron pair breaks \checkmark electron pair now on O¯ \checkmark | [3] | | (b)(i) | radio waves ✓ | [1] | | (ii) | chemical shift | | | | CH ₃ CH ₂ COOCH ₃ ✓ | [5] | | (c) | H—C—C—C——————————————————————————————— | | | | н н ∪—н √ | [1] | | 4(a)(i) | CI
 | | |---------|---|------| | | + Cl ₂ + HCl | [1] | | (ii) | Introduces a permanent dipole on Cl_2 / forms Cl^+ / AlCl_3 + Cl_2 \rightarrow AlCl_4^- + Cl^+ / AlCl_3 + Cl_2 \rightarrow Cl^{δ^+} - $\text{AlCl}_3^{\delta^-}$ \checkmark | [1] | | (iii) | correct dipole / Cl ⁺ . ✓ curly arrow from benzene ring to Cl ⁺ . / Cl ^{δ+} . ✓ intermediate ✓ | | | | curly arrow from H to regenerate benzene ring in intermediate ✓ H ⁺ as other product ✓ | [4] | | (iv) | electrophilic substitution ✓ with electrophilic spelt correctly | [1] | | (b) | In benzene, π electrons are delocalised/spread out ✓ In alkenes, π electrons are concentrated between 2 carbons ✓ Electrophiles attracted more to greater electron density in alkenes ✓ | [3] | | 5 (a) | G: $CO \checkmark$
$HCOOH/H_2CO_2 \longrightarrow CO + H_2O \checkmark$ | | | (b) | H: $C \checkmark$ $C_{12}H_{22}O_{11} \longrightarrow 12C + 11H_2O \checkmark$ | | | (c) | I: $C_4H_8O_2 \checkmark$
$2C_2H_6O_2 \longrightarrow C_4H_8O_2 + 2H_2O \checkmark$ | | | | Structure: | | | | accept any sensible structure of C ₄ H ₈ O ₂ | [7] | | | Paper Total | [60] | ## Assessment Objectives Grid (includes QWC) | Question | AO1 | AO2 | AO3 | Total | |-----------|-----|-----|-----|-------| | 1(a)(i) | 1 | | | .1 | | 1(a)(ii) | 1 | | | 1 | | 1(a)(iii) | | 1 | | 1 | | 1(a)(iv) | | 2 | | 2 | | 1(a)(v) | 1 | | | 1 | | 1(a)(iv) | | 2 | | 2 | | 1(b)(i) | | 1 | | 1 | | 1(b)(ii) | | 3 | | 3 | | 1(b)(iii) | | 2 | | 2 | | 1(b)(iv) | 2 | | | 2 | | 2(a)(i) | 1 | 1 | | 2 | | 2(a)(ii) | 2 | | | 2 | | 2(b) | | 2 | | 2 | | 2(c)(i) | | 3 | | 3 | | 2(c)(ii) | | 1 | | 1 | | 2(c)(iii) | 3 | | | 3 | | 3(a)(i) | | 2 | | 2 | | 3(a)(ii) | | 1 | | 1 | | 3(a)(iii) | 1 | | | 1 | | 3(a)(iv) | | 3 | | 3 | | 3(b)(i) | 1 | | | 1 | | 3(b)(ii) | | | 5 | 5 | | 3(c) | | 1 | | 1 | | 4(a)(i) | 1 | | | 1 | | 4(a)(ii) | 1 | | | 1 | | 4(a)(iii) | | 4 | | 4 | | 4(a)(iv) | 1 | | | 1 | | 4(b) | 3 | | | 3 | | 5(a) | | 2 | | 2 | | 5(b) | | 2 | | 2 | | 5(c) | | 3 | | 3 | | Totals | 19 | 36 | 5 | 60 |