

GCE

Chemistry

Advanced GCE A2 7882

Advanced Subsidiary GCE AS 3882

Mark Schemes for the Units

June 2006

3882/7882/MS/R/06

OCR (Oxford, Cambridge and RSA Examinations) is a unitary awarding body, established by the University of Cambridge Local Examinations Syndicate and the RSA Examinations Board in January 1998. OCR provides a full range of GCSE, A level, GNVQ, Key Skills and other qualifications for schools and colleges in the United Kingdom, including those previously provided by MEG and OCEAC. It is also responsible for developing new syllabuses to meet national requirements and the needs of students and teachers.

This mark scheme is published as an aid to teachers and students, to indicate the requirements of the examination. It shows the basis on which marks were awarded by Examiners. It does not indicate the details of the discussions which took place at an Examiners' meeting before marking commenced.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes should be read in conjunction with the published question papers and the Report on the Examination.

OCR will not enter into any discussion or correspondence in connection with this mark scheme.

© OCR 2006

Any enquiries about publications should be addressed to:

OCR Publications PO Box 5050 Annersley NOTTINGHAM NG15 0DL

Telephone: 0870 870 6622 Facsimile: 0870 870 6621

E-mail: publications@ocr.org.uk

Advanced GCE Chemistry (7882)

Advanced Subsidiary GCE Chemistry (3882)

MARK SCHEME ON THE UNITS

Unit	Content	Page
2811	Foundation Chemistry	1
2812	Chains and Rings	7
2813/01	How Far? How Fast?	13
2813/03	How Far? How Fast?	19
	(Practical Examination)	
2814	Chain, Rings and Spectroscopy	27
2815/01	Trend and Patterns	35
2815/02	Biochemistry	41
2815/03	Environmental Chemistry	47
2815/04	Methods of Analysis and Detection	53
2815/05	Gases, Liquids and Solids	59
2815/06	Transition Elements	65
2816/01	Unifying Concepts in Chemistry	71
2816/03	Unifying Concepts in Chemistry (Practical Examination)	77
*	Grade Thresholds	83

Mark Scheme 2811 June 2006

	reviatio		/ = alternative and acceptable answers for the same marking point	
annotations and			; = separates marking points	
conventions			NOT = answers which are not worthy of credit () = words which are not essential to gain credit	
used in the Mark		Mark	= (underlining) key words which <u>must</u> be used to gain credit	
Sch	eme		ecf = error carried forward	
			AW = alternative wording ora = or reverse arg	ument
Que	stion		Expected Answers	Marks
1	(a)	(i)	(atoms of) same element/same atomic number/number of protons	
			with different numbers of neutrons/diff masses ✓	[1]
		(ii)	proton neutron electron	
			relative mass 1 1 $\frac{1}{1840}$ / negligible \checkmark	
			relative charge +1 0 −1 ✓	
			i.e. 1 mark for each correct row	
			for electron, accept 1/1500 – 1/2000	[2]
	(1-1	(:)	for charges, accept +; 0; -	[-]
	(b)	(i)	average atomic mass/weighted mean/average mass ✓	
			compared with carbon-12 ✓	
			1/12th of mass of carbon-12/on a scale where carbon-12 is 12 ✓	
			OR	
		(ii)	The mass of 1 mole of atoms of an element ✓	
		()	compared with 12 g ✓ of carbon-12 ✓	[3]
			$A_{\rm r} = \frac{(121 \times 57.21) + (123 \times 42.79)}{100} / 121.8558 \checkmark$	
			= 121.9 √	[2]
	(c)	(i)	107° ✓ (accept any angle in the range 108° —→ 91°)	[1]
		(ii)	electron pairs repel electron pairs/bonds go as far apart as	
		(")	possible√	[2]
			lone pairs repel more ✓	r-1
	(d)	(i)	Mass Sb_2S_3 in stibnite = 5% of 500 kg = 25.0 kg \checkmark	
			Moles Sb ₂ S ₃ = $\frac{25.0 \times 10^3}{340}$ / 73.5/ 73.529 /73.53/ 74 mol ✓	
			(calculator value: 73.52941176)	
			If 5% is not used, 1471 mol; ecf for 2nd mark	
			(calculator value: 1470.588235)	F03
			If 5% is used 2nd, 73.6 mol: OK for both marks	[2]
		(ii)	moles Sb = $2 \times 73.5 \text{ mol } \checkmark$ ecf ans from (i) $\times 2$	
		(11)	mass Sb = 2 x 73.5 x 122 g = 17.9 kg ✓ ecf ans above x 2	
			If the 2 isn't used, answer = 73.5 x 122 = 8.95 ✓	
			OR	
			% Sb = 244/340 = 71.7% ✓	[2]
			mass Sb = $25.0 \times 71.7/100 = 17.9 \text{ kg} \checkmark \text{ (ecf as above)}$	-
			(Total: 15
			I and the second	1

Abbreviations, annotations and conventions used in the Mark		and	/ = alternative and acceptable answers for the same marking ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit	
Schem	ne		<pre>= (underlining) key words which must be used to gain credit ecf = error carried forward</pre>	
			AW = alternative wording	
			ora = or reverse argument	
Questi	ion		Expected Answers	Marks
2	(a)	(i)	hydrogen / H₂ ✓	[1]
		(ii)	$Sr + 2H_2O \longrightarrow Sr(OH)_2 + H_2 \checkmark$	[1]
		(iii)	different numbers of moles/atoms/ different A _r values ✓ so different number of moles of H ₂ /more moles of Ca ✓ (i.e. an attempt to quantify difference)	[2]
		(iv)	8–14 ✓	[1]
	(b)	(i)	Ca ⁺ (g) → Ca ²⁺ (g) + e ⁻ Equation with correct charges and 1 electron lost ✓ state symbols ✓ '–' not required on 'e'	[2]
		(ii)	same number of protons or same nuclear charge attracting less electrons/ electron removed from an ion/ less electron-electron repulsion (not less shielding)/ ion is smaller	[1]
		(iii)	atomic radii of Sr > atomic radii of Ca/ Sr has electrons in shell further from nucleus than Ca/ Sr has electrons in a higher energy level/ Sr has more shells ✓ Therefore less attraction ✓ Sr has more shielding than Ca ✓	
			('more' is essential) increased nuclear charge is outweighed / despite increased	[3 max]
			nuclear chargeby at least one of the factors above ✓	
				Total: 11

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
3 (a)	attraction between oppositely charged ions/ oppositely charged atoms ✓	[1]
(b)	For CaO: correct dot and cross ✓; correct charges ✓ For CO₂: correct dot and cross ✓	[3]
(c)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ ✓	[1]
(d) (i)	Molar mass CaO = 56.1 (g mol ⁻¹) \checkmark (anywhere) moles CaO = $\frac{1.50}{56.1}$ = 0.0267/0.027 \checkmark calc: 0.0267379 Allow 56 which gives 0.0268	[2]
(ii)	moles $HNO_3 = 2 \times 0.0267$ = 0.0534 or 0.0535 /0.053 mol \checkmark (i.e. answer to (i) x 2) volume of $HNO_3 = \frac{0.0534 \text{ (or 5)} \times 1000}{2.50} = 21.4 \text{ cm}^3 \checkmark$ calc from value above = 21.3903743 If 0.053 mol, answer is 21 cm ³ but accept 21.2 cm ³ If 0.054 mol, answer is 22 cm ³ but accept 21.6 cm ³	[2]
(e) (i)	dative covalent, bonded pair comes from same atom/ electron pair is donated from one atom/ both electrons are from the same atom ✓	[1]
(ii)	Ca(NO ₃) ₂ \longrightarrow CaO + 2NO ₂ + $\frac{1}{2}$ O ₂ \checkmark or double equation with 2/2/4/1	[1]
		Total: 11

Abbreviations, annotations and conventions used in the Mark Scheme	 annotations and conventions used in the Mark i = separates marking points NOT = answers which are not worthy of credit i = words which are not essential to gain credit i = words which are not essential to gain credit 	
Question	Expected Answers	Marks
4 (a) (i) (ii) (iii)	203.3 g mol ⁻¹ ✓ Accept 203 white precipitate / goes white ✓ Ag ⁺ (aq) + Cl ⁻ (aq) → AgCl(s) equation ✓ state symbols ✓ AgCl dissolves in NH ₃ (aq) ✓ AgBr dissolves in conc NH ₃ (aq)/ partially soluble in NH ₃ (aq) ✓	[1] [1] [2]
	Agl insoluble in NH₃(aq) ✓	[3]
(b)	Cl ₂ : 0	[3]
(c)	Tap water contains chloride ions ✓	[1]
		Total: 11

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking process; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording	point
	ora = or reverse argument	
Overtion	Everated Anguage	Maylee
Question 5	Expected Answers	Marks
5	High boiling point or difficult to break linked to strong bonds in the right context within Li or C ✓	[1]
	Li conducts by delocalised/free/mobile electrons ✓ structure: giant ✓ metallic ✓ or '+ ions with a sea of electrons' for giant mark'	[3]
	C conducts by delocalised/free/mobile electrons ✓ structure: giant ✓ covalent ✓ with layers ✓	[4]
	N No mobile charge carriers/electrons/ions to conduct electricity ✓	
	simple molecular structure/made of N₂ molecules ✓ low boiling point or easily broken due to intermolecular forces/ van der Waals' forces ✓	[3]
		Sub-Total: [11]
	QWC: At least 2 complete sentences in which the meaning is clear. ✓	[1]
		Total: 12

Mark Scheme 2812 June 2006

2812 Mark Scheme June 2006

1(a) octane, $400 \, ^+/- 5$ hexadecane. $545 \, ^+/- 5$ if $^{\circ}$ C penalise once.

√

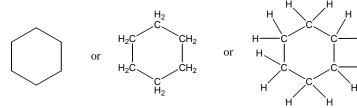
(b) fractional distillation

 \checkmark

(c) (i)

•

(ii) 2-methylpentane


 \checkmark

- (iii) C, B and A
- (iv) the more branching/the shorter the chain... the lower the boiling point/less energy needed to separate the molecules ✓

long chain have greater surface area/surface interactions/more VdW forces or converse argument about short/branched chains.

(d) (i)

not just C₆H₁₂

- (ii) $C_6H_{14} \longrightarrow C_6H_{12} + H_2$
- (iii) <u>better</u> fuels/<u>more</u> volatile/<u>lower</u> boiling point/reduces knocking/increases octane rating/used as (petrol) additives
- (e) (i) M_r of $(CH_3)_3COH = 74$

% oxygen = (16/74) x 100 = 21.6 %

(ii) $(CH_3)_3COH + 6O_2 \longrightarrow 4CO_2 + 5H_2O$ 1 mark for CO_2 and H_2O only

[Total: 16]

2812 **Mark Scheme** June 2006 C_5H_8 **2**(a) (i) C_5H_8 (ii) (b) (i) Ni/Pt/Pd 1 mark for C₅H₁₂ (ii) 1 mark for correct balancing (iii) (c) (i) electron/lone pair acceptor curly arrow from π -bond to $Br^{\delta+}$ dipoles on the Br-Br bond CH₂Br curly arrow from Br–Br bond to Br^δcurly arrow from Br⁻ to C⁺

[Total: 10]

2812		Mark Scheme	June 2006
3 (a)	(i)	$M_{\rm r}$ of 2-methylpropan-1-ol = 74	✓
		moles = $4.44/74 = 0.06$	✓
	(ii)	moles = 5.48/137 = 0.04	✓
	(iii)	66.7%	✓
(b)	(i)	correctly shows three repeat units with 'end bonds'	✓
		correctly identifies the repeat unit ✓ H CI H	_
	(ii)	harmful/toxic fumes are produced	✓
	(iii)	recycle/remove HCl by using gas scrubbers or wtte/crack polymers/used as	eedstock/

recycle/remove HCl by using gas scrubbers or wtte/crack polymers/used as feedstock/ source of fuel (in an incinerator)/developing biodegradable alternatives. ✓✓

(c) The C-Halogen bond most likely to be broken is ${f C-Br}$ because it is the weakest bond \checkmark

[Total: 10]

2812		Mark Scheme	June 2006
4 (a)	(i)	$Cl_2 \longrightarrow 2Cl \bullet$	✓
	(ii)	uv (light)/high temperature/min of 400 °C/sunlight	✓
	(iii)	$Cl \bullet + C_6H_{12} \longrightarrow C_6H_{11} \bullet + HCl$	✓
		$C_6H_{11} \bullet + Cl_2 \longrightarrow C_6H_{11}Cl + Cl \bullet$	✓
	(iv)	react with each other/suitable equation	✓
		solvent W = water/aqueous/aqueous ethanol	✓
		solvent X = ethanol/alcohol	✓
(c)	(i)	continuous evaporation & condensation/ heating without loss of volatile comp	onents√
	(ii)	there is not a absorption between 3230–3550 (cm ⁻¹) don't allow 2500–3300 cm ⁻¹	✓
	(iii)	Br ₂ and decolourised/not clear/not discoloured	✓
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	√
		$C_6H_{10} + Br_2 \longrightarrow C_6H_{10}Br_2$	
(d)	(i)	H ₂ SO ₄ – any mention of (aq) loses the mark	✓
	(ii)	any correct formula/structure or name for benzoic acid	✓
(e)	(i)	dichromate/Cr ₂ O ₇ ²⁻ /permanganate	✓
	(ii)	OH + [O] + H ₂ O	✓
		$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
		$C_6H_{12}O + [O] \longrightarrow C_6H_{10}O + H_2O$	

[Total: 13]

2812 **Mark Scheme** June 2006 5. Structural/chain/positional isomers have the same molecular formula, different structure ✓ but-1-ene/ but-2-ene/ methylpropene / cyclobutane/ methylcyclopropane **///** (any three or two with correct structures and names) 4 marks for structural isomerism Cis-trans /geometric isomerism cis & trans but-2-ene clearly identified C=C prevents rotation each C in the C=C double bond must be bonded to two different atoms or groups 4 marks for cis-trans isomerism QWC: Well organised answer making use of correct terminology to include any three from: structural, geometric, cis-trans, molecular formula, restricted, rotation, stereoisomerism, stereoisomers, chain isomerism, positional isomerism, if all isomers are correctly named

[Total: 9]

Mark Scheme 2813/01 June 2006

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
1(a)	CO from incomplete combustion/ insufficient oxygen ✓ NO from nitrogen and oxygen in the air ✓	2
(b)(i)	$CIO + O \rightarrow CI + O_2 \checkmark$	1
(ii)	$O_3 + O \rightarrow 2O_2 \checkmark$	1
(iii)	effect of uv radiation/ homolytic fission/ effect of sunlight ✓ on CFCs/ on chlorocarbons ✓	2
(iv)	increase (skin cancer) ✓	1
		Total: 7

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
2(a)(i)	to break a bond energy has to be put in/ ✓ breaking bonds is endothermic	1
(ii)	energy needed to break 1 mole of bonds ✓ in the substance in the gaseous state ✓	2
(iii)	bonds broken: $3(C-H) + (C-O) + (O-H) + 1\frac{1}{2} (O=O) = 2781 \text{ kJ} \checkmark$ bonds made: $2(C=O) + 4(O-H) = 3470 \text{ kJ} \checkmark$ $\Delta H_c = -689 \checkmark (\text{kJ mol}^{-1})$	3
(iv)	actual bond enthalpies may be different from average values ✓ conditions are not standard / methanol/ water is a liquid under standard conditions ✓	2
(b)(i)	more CO and H₂/ less CH₃OH/ moves to LHS ✓ reaction is exothermic/ ora ✓ (moves in endothermic direction scores 1) less CO and H₂/ more CH₃OH/ moves to RHS ✓ more mole/molecules/particles on LHS/ ora ✓	4
(ii)	more particles per unit volume/ increased concentration/ particles closer together ✓ more collisions and increases rate✓	2
(iii)	heterogeneous ✓	1
(iv)	none ✓ affects forward and reverse reaction the same ✓	2
		Total: 17

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
3(a)	the statement is true because there are more collisions (as temperature increases) \checkmark increase in temperature increases the velocity/ energy of particles \checkmark rate increases (with increase in temperature) more than can be explained by this/ but not all collisions are successful \checkmark to be successful collisions must exceed E_a \checkmark if temperature increased higher proportion of collisions exceed E_a \checkmark	5
(b)(i)	y axis: fraction/ number of particles/ molecules/ atoms ✓ x axis: energy/ velocity ✓	2
(ii)	line labelled T₂ with higher maximum ✓ maximum to LHS of original line ✓ (must start at 0.0, be below original curve at higher energies, cut the other curve only once and not cross the x axis)	2
		Total: 9

Abbreviations,	/ = alternative and acceptable answers for the same marking	point	
annotations and	; = separates marking points		
conventions	NOT = answers which are not worthy of credit () = words which are not essential to gain credit		
used in the Mark	() = words which are not essential to gain credit = (underlining) key words which must be used to gain credit		
Scheme	ecf = error carried forward	l	
	AW = alternative wording		
	ora = or reverse argument		
Question	Expected Answers	Marks	
4(a)(i)	(enthalpy/ energy change) when 1 mole of		
	substance/compound formed ✓		
	from its elements ✓		
	under standard conditions ✓ (if conditions quoted must be		
	correct – 25 °C/298 K, 1 atm/100 kPa/101 kPa)	3	
(ii)	$Mg(s) + N_2(g) + 3O_2(g) \rightarrow Mg(NO_3)_2(s)$		
	balanced species ✓		
	state symbols ✓	2	
(iii)	cycle ✓		
()	x - 791 = -602 - 2(33)		
	x = 123 √	3	
	X 120		
(b)(i)	a proton donor ✓	1	
41D			
(ii)	solid disappears/ dissolves / colourless solution forms ✓	1	
(iii)	MgO + 2HCl → MgCl ₂ + H ₂ O ✓	1	
(iv)	$MgO + 2H^{+} \rightarrow Mg^{2+} + H_{2}O \checkmark$	1	
(iv)	IVIYO + 2F1 - 7 IVIY + F12O V	1	
		Total: 12	

Mark Scheme 2813/03 June 2006

2813/03 Mark Scheme June 2006

PLAN Skill P: 16 marks (out of 19 available)

Α	Gravimetric method – 6 marks	
A1	Known/weighed mass of hydrated sodium carbonate is [heated] in a crucible	[1]
A2	Heat gently at first and reason (to avoid spitting/frothing) OR heat gently at first then heat more strongly OR heat gently to avoid decomposition of residue No penalty for not removing lid	[1]
A3	Allow residue to cool with lid on (<i>specific statement</i>) the crucible or in a desiccator OR Cool residue before weighing so that convection currents don't affect the reading	[4]
A4	Weigh after cooling to obtain mass of anhydrous residue A4 can only be awarded if the residue is indicated to be the anhydrous salt	[1] [1]
A5	Heat to constant mass to ensure complete reaction/dehydration Reason is required. No detail of constant mass procedure required	[1]
A6	Repeat whole procedure and take mean of readings OR repeat procedure until consistent data is obtained	[1]
В	Titration – 5 marks	
In a d	description of a back-titration marking points B2 and B4 are NOT available	
B1	Known mass of hydrated sodium carbonate used and solution made up in volumetric flask with distilled water	[1]
B2	Titrates with specified acid of stated concentration Concentration of acid must lie between 0.02 and 0.5 mol dm ⁻³	[1]
ВЗ	Pipette alkali into conical flask/beaker and put acid in burette (or vice versa)	[1]
B4	Named indicator and correct final colour Note: Phenolphthalein is not suitable Methyl orange orange/red/pink (acid in burette) or yellow/orange (alkali in buret Screened methyl orange goes light purple/grey (in either direction) Methyl red goes red (if acid in burette) or orange/yellow (alkali in burette)	[1] te)
B5	Obtains two consistent/concordant/identical readings/within 0.1 cm ³ and Trial/first titration done or dropwise approach to end point outlined	[1]

Mark Scheme

June 2006

2813/03

C Calculations - 4 marks C1 Equation for reaction of sodium carbonate with chosen acid $Na_2CO_3 + 2HCI \rightarrow 2NaCI + CO_2 + H_2O$ or Na₂CO₃.xH₂O + 2HCl \rightarrow 2NaCl + CO₂ + (x + 1)H₂O [1] Do NOT award mark C1 if there are any ICT errors (such as HCL or CO2) C2 Researches the value of x = 10 and uses M_r approx. 286 in calculation [1] C3 Specimen calculation of quantities suitable for the titration procedure: a suitable mass of hydrated Na₂CO₃ to titrate with the acid of concentration specified or a suitable concentration/volume of acid to react with carbonate [1] C4 Shows clearly and correctly how **x** is calculated from gravimetric data [1] The specimen calculation must begin with the weighings recorded S Sources etc. - 4 marks S1 Researches hazard of sodium carbonate **and** states a safety precaution [1] [Solid] sodium carbonate is irritant Accept routine precautions - safety specs, lab coat, gloves - linked to hazard S2 Two secondary sources quoted in the text **or** as footnotes **or** at end of plan. [1] Book references must have chapter or page numbers Internet reference must go beyond the first slash of web address Accept one specific reference to 'Hazcards' Allow one reference to a specific OCR past paper (but not to teaching notes etc.) S3 **QWC**: text is legible **and** spelling, punctuation and grammar are accurate [1] Award S3 if there are fewer than **six** errors in legibility, spelling, punctuation or grammar. Penalise a repeated error only once: mis-spelling of the same word is one error. S4 **QWC**: information is organised clearly and coherently [1] Can you say 'yes' to all three of the following questions? Is a word count given and within the limits 450–850 words? Is scientific language used correctly – allow one error without penalty. Is there a terminology error – e.g. 'burn' for 'heat' Is there an incorrect chemical formula in the text (e.g. NaCO₃)? If units are quoted are they [normally] correct? (e.g. mol dm³) Are the descriptions of both procedures presented logically?

Mark Scheme 2813/03 June 2006 **TEST** Page 3: Part 1 (7 marks) [1] **Table drawn** showing all pairs of four readings Table must have some grid lines, and suitable labelling in words Two sets of temperature readings clearly shown and unit shown at least once [1] All four temperatures must be recorded to one decimal place Two pairs of mass readings, to at least 0.01 g, recorded, with unit shown at least once [1] Mean temperature rise **and** mean mass worked out correctly [1] Mean mass must be recorded to 2 decimal places (or as for masses in the table) **Accuracy** of candidate's mean temperature rise [3] Accuracy marks awarded by comparison with the supervisor's mean temp. rise Give 3 marks if candidate's mean is within 1.0 °C of supervisor's mean temp. rise Give 2 marks if candidate's mean is within 1.5 °C of supervisor's temp. rise Give 1 mark if candidate's mean is within 2.5 °C of supervisor's temp. rise Page 4 (4 marks) (a)(i) Heat produced = mass of water x shc x temperature rise/change [1] Heat produced correctly calculated [1] Sig. fig. errors in calculations are penalised once only in Part One $M_{\rm r}$ of sodium carbonate = 106 [1] (b) n(sodium carbonate) = mass used/106 [1] Answer should be to 3 sig fig. Page 5 (4 marks) (c)(i) $Na_2SO_4 + CO_2 + H_2O$ shown [1] State symbols: (aq), (g) and (l) given in equation. [1] State symbols mark is conditional on formulae being correct Method of calculating enthalpy: (c)(ii) divide by 1000 and divide by number of moles of carbonate from (b) [1] This is a 'method' mark. Enthalpy change correctly calculated with <u>negative</u> sign **and** to 2 or 3 sig. fig. [1] Apply ecf between parts of all calculations.

Mark Scheme

June 2006

2813/03

Page 6: Part 2 (6 marks) Two initial and final temperatures shown, labelled clearly, with unit, at least once and subtractions and mean are both correct [1] Do not penalise absence of unit if this has already been penalised in part 1 Two initial and final masses shown, to 2 (or more) decimal places, labelled clearly with unit and subtractions correct and mean is correct [1] Do not penalise absence of unit if this has already been done in part 1 Both of the candidate's correct temperature drops are within 0.5 °C of each other [1] **Accuracy** of candidate's mean temperature drop [3] Give 3 marks if candidate's mean is within 0.8 °C of supervisor's mean Give 2 marks if candidate's mean is within 1.3 °C of supervisor's mean Give 1 mark if candidate's mean is within 1.8 °C of supervisor's mean If candidate did only one reading use it to assess the accuracy mark. Page 7 (4 marks) (a) Correct answer scores the mark [1] $n(hydrated sodium carbonate) = \frac{mass}{286}$ (b) [1] This is a method mark for calculating the number of moles Correct numerical value for ΔH calculated by candidate [1] ΔH quoted without a negative sign **and** to 2 or 3 sig. fig. [1] This mark is dependent on award of the previous one Page 8: Part 3 (5 marks) (a) Two downward arrows linking top boxes with products [1] Left downward arrow labelled with ΔH (anhydrous) from Part 1 (or -20.6) **and** right downward arrow labelled with ΔH (hydrated) from Part 2 (or +27.5) [1] Mark is for correct labelling of arrows, in the direction drawn by the candidate. (b) Enthalpy change for hydration = $\Delta H(\text{part 1}) - \Delta H(\text{part 2})$ [1] If the arrows on Hess diagram are wrong, mark ecf to the diagram Negative sign (if appropriate) must be included (c) The acid is corrosive or causes burns/blisters [1] Wash with plenty of water **or** wash under tap for several seconds [1] Idea of lots of/running water is required.

2813/03 Mark Scheme June 2006

i age 5. i ait + (i + iiiaik5, iiiaxiiiiaiii	Page 9: Part 4	(14 marks, maximum
--	----------------	--------------------

When awarding a mark, put the code letter in the margin Write the page total (unringed) at the foot of each page

(a)	4 marks available	
	Ground-up solid has larger surface area	[1]
	Frequency of collisions [between acid and solid] will increase	[1]
	Rate of reaction will increase	[1]
	Faster rate means less opportunity for heat gain/exchange or faster rate means that reaction will froth too much/cause too much spray A4 is for stating the advantage or disadvantage of having a faster rate	[1]
(b)	9 marks	
	Mark the candidate's best three strands (from the five suggested below)	
1	Heat losses/gains	[1]
	Conduction or convection or evaporation of water/acid	[1]
	Remedy: use a lid or use a thermos/ Dewar/ vacuum flask Also accept a clear reference to plotting a cooling curve	[1]
2	Loss of [acid] spray during reaction	[1]
	Use a lid <i>or</i> use a larger container	[1]
	A valid method of slowing the reaction down	[1]
3	Do extra/further repeats	[1]
	Obtain a consistent temperature change <i>or</i> ignore anomalous results <i>or</i> a comment that readings obtained were consistent <i>(if true!)</i>	[1]
	Consistent readings are evidence of reliability	[1]
4	Thermometer is inaccurate <i>or</i> should be more accurate <i>or</i> only calibrated to 1 °C	[1]
	High percentage error in readings	[1]
	Use a thermometer that is more accurately calibrated/ calibrated to 0.1or 0.2 °C	[1]
5	Mixture still fizzing when maximum/minimum temperature recorded	[1]
	Shows that reaction was still taking place or shows that more heat was being produced/absorbed	[1]
	Use [a greater] excess of acid or use [the same volume of] more concentrated acid	[1]

2813/0	Mark Scheme	June 2006	
(c)	1 mark		
	Heat loss or inaccuracy in thermometer is main error Answer must relate to strands 1 or 4	[1]	
(d)	4 marks, maximum		
	The product of the reaction is a solid [if correct amount of water is used]	[1]	
	So, there would be no liquid water to dip the thermometer in	[1]	
	Direct hydration reaction is <u>very</u> exothermic or a <u>lot</u> of heat is produced	[1]	
	This might cause some water to evaporate/steam to be released	[1]	
	Some of the product would dissolve in the water [if too much H ₂ O was used]	[1]	
	Then the heat change measured would not correspond to formation of solid product		
	You cannot easily tell if the reaction is complete	[1]	
	or water may not completely hydrate the anhydrous solid	[1]	

Mark Scheme 2814 June 2006

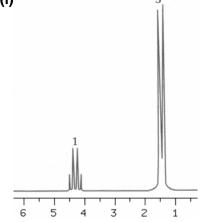
(a)(i) RCH(NH2)COOH ✓ allow groups R, CH, NH₂, COOH in any order [1] (ii) any unambiguous structure, e.g.: [1] (b)(i)molecule/ion/'it' has both + and - charges [1] NOT just 'hydrogen' (ii) description or diagram to show proton/H transfer from COOH to NH2 ✓ transfer [2] (c)(i)heat/warm/reflux ✓ named strong acid/base NOT conc HNO3 or an enzyme (which need not be named) ✓ conc H₂5O₄ [2] (ii) hydrolysis ✓ [1] (d)(i)(ethanolic) ammonia ✓ [1] (ii) any mention of chiral / optical isomers ✓ leucine synthesied in the laboratory contains a mixture of (two optical) isomers ✓ leucine from meat/natural source contains only one (optical) isomer ✓ [3] [Total: 12]

Mark Scheme 2814 Jan 2006

2 (a)(i)

(ii)structure with correct use of at least two 3-D bonds ✓ - e.g.

allow ecf if lactic acid is labelled in (i)


NOT if all four bond angles at 90° [1]

(b)(i)

[1]

(c)(i)

splitting:

doublet ✓ quartet ✓

position:

doublet peak is at ~1.4 and quartet peak is at ~4.3 ✓

allow ecf from one incorrect splitting

ignore any other

peaks

pattern

areas:

1 and 3 on the correct peaks (or either way round as ecf if any errors above) √

OH/labile protons now visible AW ✓

[2]

(d)(i)

[1]

(ii) any sensible change in flavour linked to the presence of the ester or loss of the acid \checkmark - e.g. 'more fruity due to the ester' 'less sour as acids get used up'

[1]

[Total: 12]

3 (a)(i)*NaOH / Na* ✓ [1]

(ii) $C_6H_5OH + NaOH \longrightarrow C_6H_5O^{-}Na^{+} + H_2O$ / $C_6H_5OH + Na \longrightarrow C_6H_5O^{-}Na^{+} + \frac{1}{2}H_2 \checkmark$ [1]

[1]

[2]

(iii) lone/electron <u>pair</u> from oxygen is delocalised into the ring /interacts with π -electrons \checkmark

increases π -electron density / negative charge (around the ring) \checkmark

attracts electrophiles more ✓ [3]

(c)M_r salicylic acid = 138 ✓

moles (in 1:1 reaction) = $3500 \times 10^6 / 138 = 2.536 \times 10^7 \checkmark$

mass of phenol needed = $2.536 \times 10^{7} \times 94 = 2384$ tonnes \checkmark

allowing for 45% yield = $2384 \times \frac{100}{45} = 5298/5300$ (tonnes) \checkmark allow 5297.5-5300

allow ecf throughout [4]

[Total: 12]

4 (a)(i) nitrous acid / HNO₂ [1]

[1]

[1]

(iii) diazonium (ion /salt) ✓ [1]

(iv) to prevent decomposition / it reacting (diazonium ion) is unstable AW

(V) structure showing the amine coupled to the phenol or its salt - e.g.

$$CH_3$$
 OH
 OH
 OH

-N=N- ✓ rest of structure (joined by two nitrogens) ✓ [2]

(b)methylation stage (can come anywhere)

 $CH_3CI / CH_3Br \checkmark$ $AICI_3 / FeBr_3 etc. \checkmark$ $equation - e.g. C_6H_6 + CH_3CI \longrightarrow C_6H_5CH_3 + HCI \checkmark$ $intermediate\ name\ or\ unambiguous\ structure\ \checkmark$ $4\ marks$

intermediates and equations will vary if methylation is done after nitration or reduction

nitration stage

(conc) $H_2SO_4 \checkmark$ (conc) $HNO_3 \checkmark$

(conc) in vos

equation - e.g.: $C_6H_5CH_3 + HNO_3 \longrightarrow C_6H_4(CH_3)NO_2 + H_2O \checkmark$

intermediate - name or unambiguous structure ✓

4 marks

reduction stage

tin/iron \checkmark all su equation - e.g.: $C_6H_4(CH_3)NO_2 + 6[H] \longrightarrow C_6H_4(CH_3)NH_2 + 2H_2O$ re or with A also on left to give A and A and A and A and A and A are A and A and A are A and A and A are A and A are A and A and A are A are A and A are A are A and A are A are A are A are A and A are A are A are A and A are A are

allow other suitable reducing agents:

3 marks

Quality of Written Communication mark for a well organised answer with the three stages clearly distinguished and sequenced ✓ 1 mark

[12]

[Total: 18]

5 (a)(i)*NaBH*₄ ✓ [1]

(ii) 4-hydroxypentanoic acid ✓ [1]

(b)(i) section of the polymer ✓ - e.g.

(ii)a correct repeat shown ✓ - e.g.

allow ecf from (i) only if the repeat is every 2 carbons along the chain and has a COOH

[1]

[1]

(c)(i) $C_7H_{12}O_3 \checkmark$ [1]

(ii)
$$C_7H_{12}O_3 + 8\frac{1}{2}O_2 \longrightarrow 7CO_2 + 6H_2O$$
 or ecf from (i))

formulae \checkmark

balancing \checkmark

[2]

(iii) idea of providing oxygen /
reducing incomplete combustion AW ✓
[1]

(ii) G is an ester / sensible argument based on polarity ✓ [1]

[Total: 12]

2814 Mark Scheme Jan 2006

6 (a)(i)(question wording unclear - ignore response and credit the mark)

[1]

(ii)attempt at a polymer containing an ester link ✓

correct repeat of any polyester of the form:

repeat unit or monomers are correct for Terylene ✓ - i.e.

(allow correct names of the monomers)

[3]

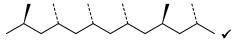
(b)polymer P

ignore the C-O bond range for **P**

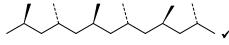
polymer R

has no O-H / peak at 3230-3550 / has no C-O / peak at 1000-1300 ↓ is a hydrocarbon √

any 3 out of 4 marks


[3]

(c)poly(phenylethene) / polystyrene ✓


[1]

(d)atactic = random (or shown by diagram) ✓ syndiotactic = alternating (or shown by diagram) ✓

correct diagram of poly(propene) showing side chains randomly arranged along the chain - e.g.

correct diagram of poly(propene) showing side chains alternating along the chain - e.g.

correct use of 3-D bonds (on at least one diagram) \checkmark

allow formulae also showing H atoms (but then needs two 3-D bonds on each carbon for the last mark)

[5]

[Total: 13]

Mark Scheme 2814 Jan 2006

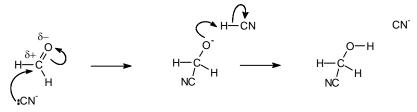
π -bonding in the carbonyl group

overlap of p-orbitals (or shown in diagram) ✓ description of π -bond above and below C-O /shown in diagram - e.g.

2 marks

reactivity with electrophiles and nucleophiles

C is δ / description of polarisation of C=O \checkmark


electrophiles will be repelled / nucleophiles will be attracted by the \mathcal{C}^+ AW

idea that π -bond electrons are unavailable (due to the polarisation) \checkmark 2 marks

[4]

mechanism

 CN^- or other suitable nucleophile chosen (allow H^+ , OH^- , NH_3 , H_2O etc.) \checkmark

curly arrow from correct atom of nucleophile to carbonyl C ✓ polarisation of \mathcal{C}°_+} = \mathcal{O}°_-} and curly arrow from π -bond to \mathcal{O} \checkmark

structure of the correct intermediate (from methanal) ✓ curly arrow from O^- to H^+ (or the H of H-CN or other suitable donor - e.g. $H_2O)$

correct organic product (or ecf if a carbonyl other than methanal) ✓ 6 marks [6]

Quality of Written Communication mark for at least two legible sentences with correct spg that attempt to answer the question \checkmark [1]

[Total: 11]

Mark Scheme 2815/01 June 2006

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same mand process. NOT = answers which are not worthy of credit. () = words which are not essential to gain credit. = (underlining) key words which must be used to gain expected by the example of the error carried forward. AW = alternative wording. ora = or reverse argument.	credit	
Question	Expected Answers	Marks	Additional guidance
1 (a)	Atomisation of Na = $(+)218 / 2 \times (+) 109 (1)$; lonisation of Na = $(+)990 / 2 \times (+)495 (1)$; Any other two correct enthalpy changes (1); Last two correct enthalpy change (1)	4	J
(b)	-791 + 141 - 247 - 990 - 218 - 416 (1); -2521 (1)	2	Allow ecf from part (a) e.g. -2026 if only 1 mole of Na → Na ⁺ -2412 if only 1 mole of Na (s) → Na (g) -1917 if only 1 mole of Na throughout Allow full marks for -2521 with no working out
(c)	Calcium chloride (1) And Br has larger ionic radius than Cl / Br has lower charge density than Cl / ora (1); K has a lower charge than Ca2+ / K has lower charge density than Ca2+ / K has a larger ionic radius than Ca2+ / ora (1); Strongest attraction between ions (when smallest radius and highest charge) / strongest attraction between ions (with the highest charge density) / ora (1)	4	If wrong salt chosen maximum of 2 marks (the comparison of the ions) Not Br has larger radius Not K has lower charge Not K ⁺ has larger atomic radius Penalise use of atoms rather than ions just once in this question
		Total = 10	

Abbreviations,	/ = alternative and acceptable answers for the same man	rking point	
annotations	; = separates marking points		
and	NOT = answers which are not worthy of credit		
conventions	() = words which are not essential to gain credit		
used in the	= (underlining) key words which <u>must</u> be used to gain of	credit	
Mark Scheme	ecf = error carried forward AW = alternative wording		
mark conomo	AW = alternative wording ora = or reverse argument		
Question	Expected Answers	Marks	Additional
Question	Expedied Allowers	IVIAI NO	guidance
2 (a)	Zn ²⁺ is 1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ¹⁰ and	2	Allow Zn ²⁺
2 (a)	Cu^{2+} is $1s^2 2s^2 2p^6 3s^2 3p^6 3d^9$ (1);		[Ar]3d ¹⁰ and Cu ² ₊
			[V ²]34 ₉
	Copper has at least one ion with an incomplete filled d-		[Ar]3d ⁹
	orbital (zinc does not) / copper(II) ion has an incomplete		
	set of d electrons (zinc ion does not) / copper(II) ion has		
	an incomplete d sub-shell (zinc ion does not) / ora (1)		- 2:
(b)	Cu ²⁺ compounds are coloured but Zn ²⁺ compounds are	2	Allow Cu ²⁺ forms
	not (1);		complexes but
	Cu ²⁺ compounds may be catalytic but Zn ²⁺ compounds		Zn ²⁺ does not
	are not (1)		Allow correct
			chemistry of Cu ²⁺
			compared to Zn ²⁺
			e.g. Cu ²⁺ and
			NaOH gives blue
			ppt but Zn ²⁺ gives
			white ppt (that
			redissolves in
(0)	Malas of hydrogen 2 47 · · 40 ⁻³ / malas of time 2 47 · ·	3	excess) Not 3 × 10 ⁻³
(c)	Moles of hydrogen = 3.17×10^{-3} / moles of zinc = 3.17×10^{-3} / moles of zinc = 3.17×10^{-3}	3	NOT 3 X 10
	10 ⁻³ (1);		N 400
	Mass of zinc = 0.207 g / moles of zinc × $65.4 (1)$;		Not 0.2
	Percentage of copper = 83.2 (1)		
			Allow ecf
			Final answer must
			be to 3 or 4 sig
			figs
			Penalise
			significant figures
			just once
			Allow values
			between
			82.9–83.2
		Total	52.0 55.2
		= 7	

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same ma ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain ecf = error carried forward AW = alternative wording ora = or reverse argument		
Question	Expected answers	Marks	Additional guidance
3 (a) (i)	$Cu \rightarrow Cu^{2+} + 2e^{-}/Cu - 2e^{-} \rightarrow Cu^{2+}(1)$	1	
(ii)	$2Cu + O_2 + 4H^+ \rightarrow 2Cu^{2+} + 2H_2O(1)$	1	Allow any correct multiple Allow ecf from (a) (i)
(b)	$M_{\rm r}$ of $[{\rm Cu}({\rm CH_3COO})_2]_2.{\rm Cu}({\rm OH})_2 = 460.5$ (1) Molar ratio $[{\rm Cu}({\rm CH_3COO})_2]_2.{\rm Cu}({\rm OH})_2$: ${\rm H_2O}$ is 0.182 : 0.906 (1) x = 5 (1)	3	Allow ecf from wrong M_r Not full marks for 5 with no working out
		Total = 5	

	reviations,	/ = alternative and acceptable answers for the same mark	king point	
anno	otations	; = separates marking points		
and		NOT = answers which are not worthy of credit		
conv	entions	() = words which are not essential to gain credit		
used	l in the	= (underlining) key words which <u>must</u> be used to gain credit		
	Scheme	ecf = error carried forward AW = alternative wording		
1110111				
	uestion	ora = or reverse argument Expected Answers	Marks	Additional
		•		guidance
4	(a)	2 sodium ions with either 0 electrons or 8 electrons in the outer shell and oxide ion with 8 electrons in the outer shell (1); Correct charge on ions Na ⁺ and O ²⁻ (1)	2	Ignore inner electrons Sodium electrons must not be shown twice
	(b) (i)	MgO has (electrostatic) attraction between ions (1)	2	
	. , . ,	This attraction is very strong – dependant on the correct		Allow strong
		force of attraction in MgO (1)		ionic bonds /
		The second of th		giant ionic (1)
	(ii)	Magnesium hydroxide with pH 8–13 (1)	1	Allow milk of
	(,	magnesiam nyaroxido with pri o ro (1)		magnesia
	(iii)	$2H^{+}(aq) + MgO(s) \rightarrow H_{2}O(l) + Mg^{2+}(aq)$	2	State symbols
	(/	Balancing (1);		mark dependant
		Correct state symbols (1)		on the correct
				formulae
				Spectator ions
				should only be
				penalised once
				<i>i.e.</i> allow state
	()		4	symbol marks
	(c)	$2AI + 1\frac{1}{2}O_2 \rightarrow AI_2O_3(1)$	1	Allow any
				correct multiple
				of the equation
				Ignore state
				symbols
	(d)	Any two from	2	Ignore
	, -	Does not conduct electricity (when molten) (1)		transparent
		Insoluble in water (1)		
		High melting point / high boiling point (1)		
		(Extremely) hard (1)		Ignore strong
	(e)	Reacts with alkalis / reacts with water to give an acid /	1	Allow an acidic
	(-)	$Cl_2O_7 + H_2O \rightarrow 2HClO_4 / strong oxidant (1)$		oxide
		5.257 . 1.25 7 2.151547 strong oxidant (1)		Not is an acid / is
				acidic
	/f \	Products sodium hydroxide, magnesium hydroxide and	2	Allow NaOH and
	(f)	•	4	
		hydrogen (1);		Mg(OH) ₂
		Reaction with sodium much faster / aw / sodium moves		
		on top of water but magnesium sinks to bottom (1)		
			Total	
			= 13	

	,		
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same mar; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain of ecf = error carried forward AW = alternative wording ora = or reverse argument	credit	
Question	Expected answers	Marks	Additional guidance
5	Ligand substitution Suitable example <i>e.g.</i> reaction of thiocyanate ions with hexaaquairon(III) to give $[Fe(H_2O)_5(CNS)]^{2+}$ (1); Observations <i>e.g.</i> formation of a blood-red colour (1) Suitable equation <i>e.g.</i> $[Fe(H_2O)_6]^{3+} + CNS^{-} \rightarrow [Fe(H_2O)_5(CNS)]^{2+} + H_2O$ (1) Precipitation Suitable example <i>e.g.</i> reaction between (aqueous)	10	Suitable example can be awarded from an equation Equations do not need state symbols Precipitate can be awarded state
	iron(II) chloride with (aqueous) sodium hydroxide (1); Observations e.g. formation of a green precipitate / formation of a green solid (1) Suitable equation e.g. Fe ²⁺ (aq) + 2OH [−] (aq) → Fe(OH) ₂ (s) (1) Redox		symbol in equation
	Suitable example e.g. oxidation of iron(II) chloride by chlorine to make iron(III) chloride (1) Observation e.g. green solution becomes yellow / rust solution (1) Suitable equation e.g. $2\text{FeC}I_2 + CI_2 \rightarrow 2\text{FeC}I_3$ (1)		Other examples could include iron and chlorine to make iron(III) chloride / iron and HCl to make FeCl ₂ / MnO ₄ ⁻ and Fe ²⁺ to make
	And QWC		Fe ³⁺
	One mark for correct spelling, punctuation and grammar in at least two sentences (1)		Answer must address the question
		Total = 10	

Mark Scheme 2815/02 June 2006

A11	I alternative and accordance to the second	
Abbreviations,	/ = alternative and acceptable answers for the same marking	point
annotations and	; = separates marking points	
conventions	NOT = answers which are not worthy of credit () = words which are not essential to gain credit	
used in the Mark	() = words which are not essential to gain credit = (underlining) key words which must be used to gain credi	t
Scheme	ecf = error carried forward	L
	AW = alternative wording	
	ora = or reverse argument	
1(a)(i)	Any one between N–H and O=C on separate chains.✓	1
- (α)(ι)	The link may be a solid line.	
(ii)	(Alpha) helix ✓ and (beta) pleated sheet ✓.	1
(b)(i)	Any two of <u>di</u> sulphide bridges	
. , . ,	Ionic attraction	
	√√ van der Waals/IDID (not hydrophobic)	
	Dipole-dipole	
	Accept a diagram if given.	2
(ii)	Between like charges(e.g. COO ⁻ and COO ⁻) ✓. AW	1
(iii)	Low pH turns COO [−] to COOH√. High pH turns NH ₃ ⁺ to NH ₂	
()	√.	
	In each case ionic attractions are destroyed√.	
	If they get the pH the wrong way round then ecf on their	3
	second example.	
	If they do not specify pH then max. 1/2.	
	in they do not openly privately max. 1/2.	
(c)	Any four marks from:	
(-)	The enzyme has an active/binding site with a specific	
	shape√.	
	The substrate fits the site. ✓ Accept diagram.	
	The substrate has a complementary/matching shape to that	
	of the site ✓. NOT the same.	
	Mention of involvement of functional/R groups in	
	binding/catalysis ✓.	
	Only one optical isomer will fit/idea of induced fit. NOT lock	
	and key.	4
	AW throughout.	•
	Avv illioughout.	
	OWC Award the mark for a clearly laid out answer that	
	QWC Award the mark for a clearly laid out answer that incorporates the ideas of shape and active site.	1
	incorporates the lucas of shape and active site.	1
(d)	✓ for basic idea of a dipeptide, including correct amide link	
(d)	H ₂ NCONHCOOH	
	1 121VCONT	
	for sideshains CH, and CH OH	
	for sidechains CH ₃ and CH ₂ OH	
	accept H/CH ₂ CH ₂ OH or OH/ CH ₃ CH ₂	
	accept any possible structure, correct in bonding terms,	
	based on H ₂ N–C–CONH–C–COOH.	
	Accept full displayed structures and ionised forms.	2
		Total: 15
	1	10141. 10

Abbreviations, annotations and conventions	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit	point
used in the Mark Scheme	() = words which are not essential to gain credit = (underlining) key words which <u>must</u> be used to gain credit ecf = error carried forward AW = alternative wording	
Question	ora = or reverse argument Expected Answers	Marks
2.(a)	Must be bilayer rather than micelle. For example	IVIdI KS
2.(a)	99999999999999999999999999999999999999	1
(b)	✓ for link of phosphate to choline ✓ for link of phosphate to glycerol ✓ for one link of glycerol to stearic acid CHARGE CHARG	
(c)	Full marks can be achieved if the three links are correct even when there is a minor mistake with the detail of the structure. Five marks from: • (Part of) the inhibitor has similar shape ✓ to that of the	3
	 substrate. Allow the same. Both have the -N(CH₃)³⁺ group√. The inhibitor competes for the active site√. Accept blocks active site/ binds instead of substrate for competes√. Inhibitor binding is reversible√. Graph showing lowering of rate√, and then return to normal max. rate√ with increasing acetylcholine/substrate concentration. The graph must show both curves to score. Only 1 mark if axes are omitted or incorrect. Last 2 marks may be scored without a graph. 	5
(d)	van der Waals attraction ✓ between long hydrocarbon chains/fatty acid tails AW and solvent molecules ✓ allows solution to form. Accept answer based on breaking of van der Waals in fatty acid tails requiring energy ✓, which is supplied by the formation of new van der Waals with non-polar solvent molecules ✓.	2
		Total: 11

Abbreviations,	/ = alternative and acceptable answers for the same marking p	point
annotations and	; = separates marking points	
	NOT = answers which are not worthy of credit	
conventions	() = words which are not essential to gain credit	
used in the Mark	= (underlining) key words which must be used to gain credit	
Scheme	ecf = error carried forward	
	AW = alternative wording	
0 (-)(:)	ora = or reverse argument	T
3.(a)(i)	RNA. The sugar is ribose√.	
	The base uracil is only found in RNA√.	
	Accept uridine.	2
(ii)	The H attached to N on the pyrimidine ring√.	
\	One of the two C=O oxygens for the second mark√.	
	NH and both C=O/ Both C=O alone scores 1.	2
		2
	Allow whole of NH or C=O ringed.	
(b)(i)	3'- TCGCGTCTGGGA-5' ✓ Numbering to be ignored unless	1
(6)(1)	sequence is reversed when it must be correct.	·
	sequence is reversed when it must be correct.	
(ii)	GAC✓	1
(iii)	Hydrogen bonding links the bases/triplets of tRNA and	
	<u>mRNA</u> √.	
	Then any three marks from:	
	Each t-RNA carries an amino acid and a base triplet√.	
	Each molecule of t-RNA carries the amino acid at one end	
	corresponding ✓ to the base triplet at the other.	
	This base triplet is complementary to the triplet on m-RNA	
	that codes for the amino acid√. They may use codon-	
	anticodon here only.	
	t-RNA brings the amino acid to be joined onto the growing	
	polypeptide chain/ the t-RNA triplets are UCG CGU CUG	
	and GGA ✓.	
	The marks may be found on a clear labelled diagram.	4
	AW throughout.	•
	Avv unoughout.	
		Total: 10

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
4(a)	Identifying the positions as 1,4 (once) and 1,6 \checkmark . To score the mark they must make it clear which C atoms on the structure they mean. Identifying the stereochemistry as α for both a 1,4 and the 1,6 links \checkmark .	2
(b)	Both acid and enzyme hydrolysis√.	1
(c)	Each example must have property tied to function. Insoluble in water so cannot move out of cells/ minimises effect on osmotic pressure or water potential in cells of large amounts of glucose√. Easily hydrolysed by enzymes to glucose when needed/branching makes hydrolysis easier√. Compact, not taking up much space√. AW throughout.	3
(d)(i)	Glucose has many OH groups vehich can hydrogen bond to water. No diagram required but if one is given it must be correct. The word many is not necessary if they have OH groups.	1
(ii)	Some OH groups from each glucose are tied up in glycosidic links ✓. AW Many of remaining OH groups will be hydrogen bonded to each other / some OH groups hidden within structure ✓. AW	2
		Total: 9

Mark Scheme 2815/03 June 2006

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
1(a)	Carbon dioxide by respiration /combustion AW ✓. Dioxin by incineration (of plastics such as PVC) at too low a temperature/incorrect temperature ✓. Methane by <u>anaerobic</u> respiration of organic waste ✓. AW	3
(b)	Its ability to absorb infrared radiation ✓. Its concentration (in the troposphere) ✓. Instead of one of these marks accept Either Its residence time/stability (in the troposphere) ✓ Or reference to one of reference to number of bonds, charge separation in the bonds, symmetry. AW	2
(c)(i)	Toxic√. Do not accept harmful/dangerous <i>etc</i> .	1
(ii)	van der Waals/ dipole–dipole attraction√. Accept clear diagram to that effect. Not hydrogen bonding.	1
(iii)	Photosynthesis (by the tomato plants). Accept production of carbohydrate. AW	1
		Total: 8

		1
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
2(a)(i)	CFCs absorb UV radiation ✓ to release chlorine atoms/radicals equation ✓ Equation e.g. CCl₂F₂ → CCIF₂ + Cl Accept dotted versions of free radicals. Chlorine atoms react with ozone to produce CIO and oxygen /equation CI + O₃ → CIO + O₂ ✓ CI is regenerated by reaction of CIO with O atoms, /equation CIO + O → CI + O₂ ✓ O atoms are produced by photolysis of O₂ / O₃ /NO₂ or an appropriate equation e.g. O₃ → O₂ + O ✓ The chain reaction ✓ means that a higher proportion of ozone is broken down than would be normally in the absence of CFCs.✓ Find 6 marks from the above. Give the QWC mark for a clearly laid out answer that shows understanding of the terms free radical/ chain reaction and one correct equation.	6
(ii)	HCFCs are broken down in the troposphere ✓ because they contain C–H bonds ✓. AW	2
(b)(i)	By direct combination during lightning/in car or aircraft engines. AW✓ NOT simply car exhausts.	1
(ii)	$2NO + O_2 \rightarrow 2NO_2 \checkmark$	1
(iii)	+2 ✓	1
(c)	(Photochemical) smog/formation of ozone in troposphere ✓ NOT global warming. Destruction of ozone in stratosphere ✓. Not acid rain.	2
		Total: 14

Τ		
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	point
3(a)(i)	$Ca^{2+} + CO_3^{2-} \rightarrow CaCO_3 \checkmark$	1
(ii)	$Ca(HCO_3)_2 \rightarrow CaCO_3 + CO_2 + H_2O \checkmark$	1
(b)	The aqueous calcium/magnesium ions in the water attach themselves to the ion-exchange resin in exchange for the sodium/hydrogen ions \checkmark already there. In this way the calcium/magnesium ions are removed from the solution \checkmark and the water is softened. The explanation should include a diagram or mention of the equilibrium involved, or an equation such as $2 \ R^-Na^+ + Ca^{2+} \longrightarrow R_2Ca + 2Na^+$	3
(c)	Either Al³+ ions form a precipitate (of aluminium hydroxide) ✓ which absorbs (other ions and) fine solids ✓. Or Al³+ ions neutralise the negative charge on the surface of colloidal particles ✓ causing them to coagulate/form a solid floc ✓. Chlorine kills bacteria ✓.	3
(d)	Acid rain has low pH/pH about $4\checkmark$. The concentration of HCO_3^- ions in solution will be lowered. \checkmark Calcium carbonate will precipitate if the concentration of carbonate ions is high enough \checkmark ; this is more likely to be the case at high rather than low pH \checkmark . AW. Reference to K_s accepted as part of explanation for first mark.	4
		Total: 12

Abbreviations,	/ = alternative and acceptable answers for the same marking	point
annotations and	; = separates marking points	
conventions	NOT = answers which are not worthy of credit	
used in the Mark	() = words which are not essential to gain credit	
Scheme	= (underlining) key words which <u>must</u> be used to gain credit	
Conomo	ecf = error carried forward	
	AW = alternative wording	
4(a)	ora = or reverse argument	
+(α)		
	Diagram should show sharing of oxygen atoms or corners between adjacent tetrahedral units ✓. Three oxygen atoms/corners ✓ on each tetrahedral unit are	
	shared in this way within a silicate sheet.	2
(b)		
	By sharing ✓ of oxygen atoms ✓ between silicate sheet and aluminate sheets ✓ (simply sharing corners earns 1 mark only). Si–O–Al earns both ✓ ✓	2
(c)	The layers in a 1 : 1 clay are linked by hydrogen bonding ✓ between hydroxyl/OH groups on aluminate sheets and (spare) oxygen atoms on the silicate sheets ✓. No room for water or cations ✓ Accept reference to layers all binding tightly for the last mark.	3
(d)	Negative charge on surface attracts cations ✓. Negative charge increased by substitution of Al³+ for Si⁴+ (or Mg²+ for Al³+) ✓. or The hydrogen atoms in the OH groups on the outside ✓ can dissociate as H⁺ ions, being replaced by metal cations ✓. An equation can earn both marks <i>e.g.</i>	
	$ROH + K^{+} \rightleftharpoons ROK + H^{+}$	2
(e)	$CaAl_2Si_2O_8 + 2CO_2 + 3H_2O \longrightarrow Al_2Si_2O_5(OH)_4$	
	+ Ca(HCO ₃) ₂ ✓ balance ✓	
	Allow 1 mark ecf if they use $CaCO_3$ and then balance correctly $(1CO_2 + 2H_2O)$.	2
		Total: 11
		i Otai. I I

Mark Scheme 2815/04 June 2006

Question	Expected Answers	Marks
1(a)(i)	Has no overall charge (at pH 7) /it is a zwitterion	1
(ii)	Has an overall positive charge	1
(iii)	A has lower mass / higher charge than B It is a smaller molecule	1
(b)	Mark for structure Acid or zwitterion H N C C C H R	1
	Decrease pH (at which electrophoresis is carried out) / Increase [H ⁺] This will cause COO– or NH ₂ group in zwitterion to be	1
	protonated	1
	resulting in uncancelled positve charge (therefore migrates towards negative electrode)	1
		Total: 7

Question	Expected Answers	Marks
2 (a) (i)	electrons excited / gain energy / jump up an energy level	1
	electrons emit energy / light as electrons return / fall down to ground state / original energy level/shell	1
(ii)	The higher energy electron shells/energy levels are closer together	1
(iii)	$E = hf/= 6.63 \times 10^{-34} \times 5.9 \times 10^{15}$	1
	multiply by L to get energy in J mol ⁻¹ = $6.63 \times 10^{-34} \times 5.9 \times 10^{15} \times 6.02 \times 10^{23}$	1
	$= 2 350 000 \text{ J mol}^{-1}$	1
	= $2 350 \text{ kJ mol}^{-1}$ (2 $355/2354 \text{ kJ mol}^{-1}$) to 3 sig. fig.	1
(b)(i)	electronic = UV/visible (spectroscopy)	1
	nuclear spin (in an external magnetic field) = nmr	1
	vibrational = infrared / ir	1
(ii)	energy (states) are quantised / there are discrete energy levels/ there are r particular bonds/parts of molecules	1
	only the frequency that corresponds to the energy difference between states will be absorbed	1
		Total: 12

Question	Expected Answers	Marks
3(a)	(M : M + 1 = 100 : 21.8)	
	No. of carbon atoms = $\underline{21.8 \times 100}$	
	100 x 1.1	1
	= 19.8 therefore 20 carbons confirmed	1
		1
(b)(i)	(group of atoms) that absorb radiation in the UV &/or visible	1
(-)()	regions of the spectrum	
(ii)	C=C / double bonds / π-bonds	1
	lone/electron pair(s) (on O atom)	1
	delocalisation / delocalised system/conjugated system/	1
	alternating double bonds	1
(c)	the (peak of the) absorption is in the UV region / outside the	
(-)	visible part of the spectrum	2
	·	
(d)(i)	wavelength (of major absorption) increases as length of	1
	delocalised / conjugated region in molecule increases	
	region of delocalisation/conjugation between oxygens in	
	rhodonines increases / clear link to rhodonine structure	1
	Thouse microacco, clear min to modernine cardinals	
(ii)	(some of) the compounds absorb in the visible region of the	1
	spectrum	
	absorption at different wavelengths / colours allows all	
	colours/full range of colours to be perceived	1
	9	
		Total: 12

Question	Expected Answers	Marks
4 (a)	$(M_r = 88 - \text{given on mass spectrum})$ molecular formula = $(C_2H_4O) \times 2 = C_4H_8O_2$ OR 1.43×100 = 4 32.40×1.1	1
(b)	infrared spectrum: presence of (sharp) peak at approx 1750 cm ⁻¹ indicates C=O peak at approx. 1200 cm ⁻¹ consistent with C–O in ester / lack of peak at 2500–3300 cm ⁻¹ shows no O–H therefore not carboxylic acid nmr: There are 3 proton environments	1 1 1
	3 proton peak at δ = approx. 1.2 R-CH ₃ triplet because next to CH ₂ 2 proton peak at δ = approx. 2.3 -OC-CH ₂ - R	1 1
	quartet because next to CH_3 3 proton peak at δ = approx. 3.7 $-O-CH_3$ singlet because not next to carbon bearing hydrogens / next to O	1 1 1 Max. 5 from 7 for nmr
	This interpretation fits methyl propanoate/diagram of structure	1
	Quality of Written Communication mark – look for use of at least three terms from peak / triplet / quartet / splitting/environment/integral	1
(c)(i)	$[C_2H_5CO]^+ = 57 / [CH_3O]^+ = 31 / [CH_3OCO]^+ = 59 / [C_2H_5]^+ = 29$ (m/e values required with each ion]) 1 max if no positive charges shown	1 mark for each ion identified up to 2 max.
(ii)	lons can be shown on labelled diagram as long as symbols fully explained	2
	Correctly labelled peaks on mass spectrum	Total: 14
		10lai. 14

Mark Scheme 2815/05 June 2006

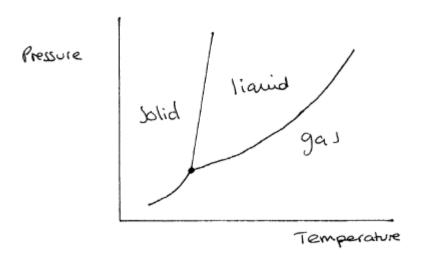
2815 Ques		June 2006
a)	Particles/molecules have mass but negligible size Allow negligible or zero volume	(1)
	There are no forces between molecules	(1)
	Collisions between particles are perfectly elastic	(1)
b) i)	Collisions of the molecules with the walls of its container	(1)
ii)	Calculation of $n = 10.5/42 = 0.25$	(1)
	$P = \underbrace{0.238 \times 8.314 \times 353}_{3.5 \times 10^{-3}}$	(1)
	= 209631.57 (ecf on substitution above) Pa (= 209.6 kPa)	(1)
(this I	last mark is for a number from their calculation with a consistent unit)	
c)	 The intermolecular forces of attraction become significant (can overcome the particles) (at low temperatures) Molecules are much closer to each other and so intermolecular forces becom/ the actual size of particles becomes significant (at high pressure when the part 	(1) e significant.

together)

[Total 9]

(1)

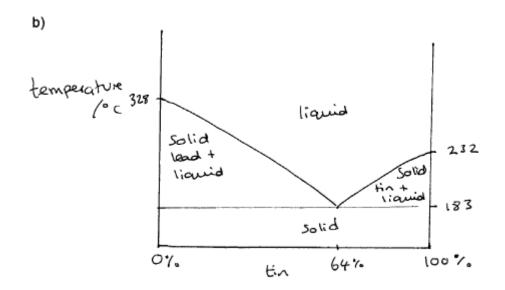
2815 05 Mark Scheme June 2006 Question 2

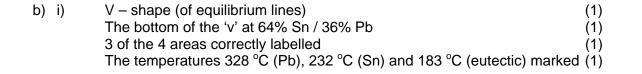

- a) Pressure decreases (1) So the CO_2 is less soluble and some escapes as a gas (1)
- b) The concentration of a gas dissolved in a liquid (at a constant temperature) (1) is proportional to the (partia)l pressure of the gas. (1)
- c) $K_h = \underline{[CO_{2(g)}]}$

$$= [CO2(g)] = 3.37 \times 10^{-4} \times 100$$

$$= 3.37 \times 10^{-2} \text{ mol dm}^{-3}$$
In a 2 litre bottle = 2 x 3.37 x 10⁻² (ecf from line above)

In a 2 litre bottle = $2 \times 3.37 \times 10^{-2}$ (ecf from line above) = 6.74×10^{-2} moles CO₂ (1)


d)



i) axes labelled (temperature and pressure)
 ii) areas labelled (solid, liquid, gas)
 iii) The Triple point is where all three phases can co-exist at equilibrium

[Total: 9]

Question 3	Mark Scheme	June 2006
a) i)	 Liquid mixture (of tin and lead) cooling / liquid cools Crystals of lead appearing (with liquid mixture) (eutectic/ 64% Sn/ 36% Pb) mixture crystallising solid mixture and lead crystals cooling / solid cools 	(1) (1) (1) (1)
ii)	B = 183 °C	(1)

ii) Eutectic (1)

[Total:10]

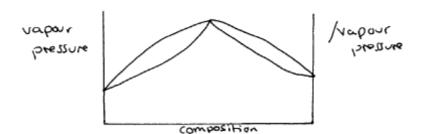
2815 05 Mark Scheme June 2006

Question 4

- a) i) It is a mixture with a range of boiling points (1)
 - ii) Source of heat / crude oil is pre-heated (1)
 - Column is cool at the top / hot at the bottom (1)
 - Vapour goes up / liquid goes down (1)
 - There is 'intimate' mixing / equilibrium is established (on the plates) (1)

Fractions are tapped off / collected which consist of molecules with similar boiling points (1)

QWC correct use of 3 terms such as fraction, equilibrium, vapour, boiling, boiling range, condensing, condensation and vaporisation. [1]


b) i) The vapour pressure of a solvent in a solution is equal to the vapour pressure of the pure solvent

x its mole fraction in the solution. (1)

 $/P_A = N_A \times P_A^0$ if the terms are defined

Allow 1 mark for identifying the correct defined terms

- ii) $P_{\text{eth}} = 180 \times 0.5 = 90 \text{ kPa}$
- iii) $P_{\text{H2O}} = 70 \times 0.5 = 35 \text{ kPa}$ (1)
 - So mole fraction of ethanol = 90/125 = 0.72 (1)
- c)i) The axes are labelled (composition and vapour pressure) (1)
 A v.p composition curve with a maximum shown (1)

- ii) The strength of the hydrogen bonding (1) between ethanol and water is less than the hydrogen bonding in either pure ethanol or pure water (1)
- d) Boiling requires separation of molecules and Hydrogen bonding requires more energy to break than van der Waals' forces. (1)

Ethanol has hydrogen bonds between molecules whereas pentane has only van der Waals' forces, and hydrogen bonds are stronger than van der Waals' forces. (1)

[Total: 17]

Mark Scheme 2815/06 June 2006

		1
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	
Question	Expected Answers	Marks
1 (a)	Emf / voltage / potential difference Half cell combined with standard hydrogen electrode Standard conditions 298K, 1 mol dm ⁻³ , 1 atm (all 3 required for 1 mark)	1 1 1
(b)(i)	Diagram shows: Voltmeter + salt bridge + complete circuit Solution labelled Cu ²⁺ and electrode labelled Ag Salt bridge (aq) Ag*(ae)	
(ii)	Direction from Cu(s) to Ag(s) (must be in / close to wire)	1
(iii) (iv)	$0.80 - 0.34 = 0.46 \text{ V}$ $Cu + 2Ag^{+} \rightarrow Cu^{2+} + 2Ag$	1
(c)	Standard Electrode Potential for chlorine is more positive than Fe ³⁺ therefore it is a better oxidising agent than Fe ³⁺ (do not accept <i>E</i> ⁹ is larger or smaller) Standard Electrode Potential for iodine is less positive than Fe ³⁺ therefore it is a poorer oxidising agent than Fe ³⁺ (Accept release of electrons/equilibrium arguments)	1 1 Total: 10
		Total. 10

Abbreviations, annotations and conventions used in the Mark Scheme	otations and ventions ; = separates marking points ; = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit	
Question	Expected Answers	Marks
2 (a)	1s ² 2s ² 2p ⁶ 3s ² 3p ⁶ 3d ⁸ (Do not accept [Ar]3d ⁸)	1
(b)	Blue / violet / indigo / lilac (not purple / magenta / mauve) Because spectrum shows absorbance in yellow / orange / red (allow green if part of a list)	1
(c) (i)	Ring around O ⁻ Ring around N (Accept ring around O of C=O as an alternative to O ⁻)	1
(ii)	Lone pair (of electrons) / non-bonding pair	1
		Total: 6

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking prices; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	point
Question	Expected Answers	Marks
3 (a) (i)	Number of dative bonds / co-ordinate bonds formed with the transition metal (Do not accept number of ligands but allow number of lone pairs bonded to)	1
(ii)	Square planar	1
(b) (i) (ii)	Ligand substitution $x = -2$ $y = 0$	1 1 1
(i)	cis isomer drawn trans isomer drawn (ignore any charges)	1
CI	NH ₃ CI NH ₃	
CI /	NH ₃ NH ₃ CI	
(ii)	cis / trans or geometric	1
(iii)	Binds with DNA (not binds with cell) Prevents replication/prevents cell dividing/prevents tumour growth (do not allow kills cell)	1
		Total: 10

Abbreviations, annotations and conventions used in the Mark Scheme	cotations and complete separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit				
Question	Expected Answers	Marks			
4 (a)	Yellow → (green)→ blue → green → lilac (violet) VO ₃ ⁻ (Mix) VO ²⁺ V ³⁺ V ²⁺ 1 mark for VO ²⁺ 1 mark for V ³⁺ 2 marks for 4 correct colours with correct oxidation state 1 mark for 3 correct colours (First green (mix) can be missed out without penalty)	1 1 2			
(b)	Moles $V^{2+}=25.0 \times 0.100 / 1000=0.0025$ mols Moles $MnO_4^-=30.0 \times 0.0500 / 1000=0.00150$ mols 1 mole of MnO_4^- changes its Oxidation State by 5 to change the Oxidation State of 1.67 moles of V^{2+} Oxidation State of V^{2+} changes by 5 / 1.67 = 3	1 1 1			
(c)	$3MnO_4^- + 5V^{2+} + 3H_2O \rightarrow 3Mn^{2+} + 5VO_3^- + 6H^+$ (1 mark for correct species, 1 mark for balanced)	2			
		Total: 10			

Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking p; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument	point
Question	Expected Answers	Marks
5	$[Co(H_2O)_6]^{2+}$ is pink / $[Co(NH_3)_6]^{2+}$ is light brown / $[CoCl_4]^{2-}$ is blue	1
	$[Co(H_2O)_6]^{3+}$ is blue / $[Co(NH_3)_6]^{3+}$ is dark brown	1
	lons can be octahedral $e.g.$ $[Co(H_2O)_6]^{2+}$ or tetrahedral $e.g.$ $[CoCl_4]^{2-}$ (need example in both cases)	1
	Equation for suitable ligand exchange reaction <i>e.g.</i> $[Co(H_2O)_6]^{2+} + 4CI^{-}$ $[CoCl_4]^{2-} + 6H_2O$	1
	$\begin{split} &[\text{Co}(\text{H}_2\text{O})_6]^{3^+} \text{ is unstable / powerful oxidising agent and readily decomposes into } [\text{Co}(\text{H}_2\text{O})_6]^{2^+} \\ &[\text{Co}(\text{NH}_3)_6]^{3^+} \text{ is much more stable than } [\text{Co}(\text{H}_2\text{O})_6]^{3^+} \\ &\text{NH}_3 \text{ is a stronger ligand than H}_2\text{O} \text{ / forms stronger dative covalent bonds than H}_2\text{O} \end{split}$	1 1 1
	One mark awarded for correct spelling punctuation and grammar in at least two complete sentences	1
		Total: 9

Mark Scheme 2816/01 June 2006

Abbreviations,	/ = alternative and acceptable answers for the same marking	point
annotations and	; = separates marking points	
conventions	NOT = answers which are not worthy of credit	
used in the Mark	() = words which are not essential to gain credit	
Scheme	= (underlining) key words which <u>must</u> be used to gain credit	
Concinc	ecf = error carried forward	
	AW = alternative wording	
	ora = or reverse argument	
Ougation	Expected Anguage	Maulsa
Question	Expected Answers	Marks
1 (a)	The contribution of a gas to the total pressure in a gas	
	mixture / pressure exerted by the gas alone /	
	mole fraction x total pressure / x P ✓	[1]
(b)	Mole fraction of Cl (g) 3.0/88.0 or 0.034 ✓	
	(calc. 0.034090909)	[1]
	(00.01 0100 1000000)	
	nCl(a) ²	
(c) (i)	$K_p = \frac{p \operatorname{Cl}(g)^2}{p \operatorname{Cl}_2(g)} \checkmark$ state symbols not required	[1]
(6) (1)	p 012(g)	ניז
	$K_p = \frac{3^2}{85} = 0.11 / 0.106 \checkmark \text{ kPa} \checkmark$	
/::\	$K_{\rm p} = \frac{1}{85} = 0.1170.106 \text{V} \text{KPa} \text{V}$	[0]
(ii)	(calc: 0.1058823529)	[2]
	Could be ecf from incorrect K_p expression.	
	pCl_2 / pCl^2 , gives 9.4 kPa ⁻¹ .	
	2 pCl / pCl ₂ , gives 0.0706 / 0.071 no units.	
	pCI / pCI_2 , gives 0.0353 / 0.035 no units.	
	no units must be specified.	
	The drifts mast be specified.	
(d)	Equilibrium moves to the side with fewer molecules which is	
(α)	•	[2]
	→ left/more Cl ₂ / less Cl ✓	[4]
	relieves the increased pressure/	
	minimises change/minimises this effect √	
	(i.e. attempts to explain in terms of le Chatelier)	
(e)	K _p decreases so equilibrium goes to the left/more Cl ₂ / less Cl	
, ,	· · · · · · · · · · · · · · · · · · ·	[1]
(f)	Amount Cl. produced 4.6 v 4.012/74 == 0.05 v 4.010 ···-1 v/	
(f)	Amount Cl_2 produced = 1.6 x $10^{12}/71$ or 2.25 x 10^{10} mol \checkmark	
	Amount NaCl required = $2 \times 2.25 \times 10^{10}$ or 4.5×10^{10} mol \checkmark	
	ecf moles 2 x Cl ₂	
	Volume brine = $4.5 \times 10^{10}/4 = 1.125 \times 10^{10} \text{ dm}^3 \checkmark$	
	ecf moles Cl ₂ /4	[0]
	337 1110100 312/1	[3]
	i.e. 1.12 – 1.13 x 10 ¹⁰ dm ³	
	1.10 X 10 WIII	Total: 11
		i Stai. I i

Abbreviations, annotations and conventions used in the Mark Scheme			/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument		
Que	stion		Expected Answers	Marks	
2	(a)		(change in) concentration/mass/volume with time	[1]	
	(b)	(i)	O ₂ : Exp 2 has 4 x [O ₂] as Exp. 1: rate increases by 4 \checkmark , so order = 1 with respect to O ₂ \checkmark NO: Exp 3 has 3 x [NO] as Exp. 3: rate has increases by 9 \checkmark , so order = 2 with respect to NO \checkmark	[4]	
(ii)			$rate = k[O_2] [NO]^2 \checkmark$	[1]	
(iii)			$k = \frac{\text{rate}}{[O_2][NO]^2} = \frac{7.10}{0.0010 \times 0.0010^2} = 7.10 \times 10^9 \checkmark$	[2]	
			units: dm ⁶ mol ⁻² s ⁻¹ ✓	لكا	
	(c)	(i)	The slowest step ✓	[1]	
		(ii)	$2NO_2 \rightarrow NO + NO_3 \checkmark$ $NO_3 + CO \rightarrow NO_2 + CO_2 \checkmark$ (or similar stage involving intermediates)	[2]	
(d)			$4NO_2 + O_2 + 2H_2O \rightarrow 4HNO_3 \checkmark$		
			N from +4 to +5 O from 0 to −2 ✓ Could be below equation	[2] Total: 13	

		1				
Abbreviations, annotations and conventions used in the Mark Scheme	point					
Question	Marks					
3 (a)	strength of acid/extent of dissociation/ionisation ✓	[1]				
(b) (i) (ii)	(b) (i) $H_2SO_3(aq) + CH_3COOH(aq) \Rightarrow HSO_3^-(aq) + CH_3COOH_2^+(aq)$ acid 1 base 2 \checkmark base 1 acid 2 \checkmark 1 mark for labels on each side of equation					
	[2]					
(c)	For HCI, pH = $-\log[H^+]$ \checkmark (or with values). Could be awarded below = $-\log 0.045 = 1.35$ \checkmark (accept 1.3) For CH ₃ COOH, [H ⁺] = $\sqrt{(K_a \times [CH_3COOH])}$ / $\sqrt{(1.70 \times 10^{-5} \times 0.045)}$ \checkmark [H ⁺] = 8.75 x 10 ⁻⁴ mol dm ⁻³ \checkmark pH = $-\log 8.75 \times 10^{-4} = 3.058/3.06$ \checkmark (accept 3.1)	[5]				
(d)	HCI and CH ₃ COOH have same number of moles/ release same number of moles H ⁺ / 1 mole of each acid produce ½ mol of H ₂ ✓ [H ⁺] in CH ₃ COOH < [H ⁺] in HCI/ CH ₃ COOH is a weaker acid than HCI (ora) ✓ Mg + 2HCI → MgCl ₂ + H ₂ ✓ Mg + 2CH ₃ COOH → (CH ₃ COO) ₂ Mg + H ₂ ✓ or Mg + 2H ⁺ → Mg ²⁺ + H ₂ ✓ ✓	[4]				
		Total: 14				

·							
Abbreviations, annotations and conventions used in the Mark Scheme	/ = alternative and acceptable answers for the same marking point ; = separates marking points NOT = answers which are not worthy of credit () = words which are not essential to gain credit = (underlining) key words which must be used to gain credit ecf = error carried forward AW = alternative wording ora = or reverse argument						
Question	Exposted Answers	Marks					
4	Expected Answers Buffer	IVIAINS					
4	A buffer minimises changes in pH ✓ Role of NH ₄ Cl NH ₄ Cl provides NH ₄ ⁺ / NH ₄ Cl → NH ₄ ⁺ + Cl ⁻ ✓ equilibrium: 1 NH ₄ ⁺ = NH ₃ + H ⁺ / 2 NH ₃ + H ₂ O = NH ₄ ⁺ + OH ⁻ ✓ How alkali is removed: ✓ NH ₄ ⁺ removes added alkali / OH ⁻ OR if equilibrium 1 has been used: H ⁺ removes added alkali / OH ⁻ ✓ Could be from an equation How acid is removed: ✓ NH ₃ removes added acid or H ⁺ / OR if equilibrium 2 has been used:						
	OH⁻ removes added acid / H⁺ ✓ Could be from an equation A correct equilibrium statement:						
	Any of the following ✓ on addition of alkali,	[6]					
	$NH_4^+ \rightleftharpoons NH_3 + H^+$ moves to right						
	$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$ moves to left on addition of acid,	[1]					
	$NH_4^+ \Rightarrow NH_3 + H^+$ moves to left						
	$NH_3 + H_2O \Rightarrow NH_4^+ + OH^-$ moves to right						
	QWC A correct equation and a correct chemistry sentence related to buffers ✓						
		Total: 7					

Abbreviations, annotations and conventions used in the Mark Scheme	point	
Question	Expected Answers	Marks
5 (a) (i)	mass sucrose = 0.47 x 43 g or 20.21 g \checkmark $M_{\rm r}$ of sucrose = 342 \checkmark moles sucrose = 0.47 x 43/342 or 0.059 mol \checkmark	
(ii)	(calc: 0.0590935672) no of sucrose molecules = $.059 \times 6.02 \times 10^{23} = 3.6 \times 10^{22}$ ✓	[4]
	$C_{12}H_{22}O_{11}(s) + 12 O_2(g) \rightarrow 12 CO_2(g) + 11 H_2O(l)$ Ignore state symbols Energy = .059 x 5640 = 332.76 kJ	
	= 332.76/4.18 = 79.6 Calories ✓ (i.e. mol sucrose from (a) x 5640/4.18) If 0.059 is missed, 5640/4.18 = 1349 Calories would score 1 mark	[3]
(b)	Empirical formula $N: O = 63.64/14: 36.36/16 \checkmark$ $= 4.56: 2.27 = 2: 1. \text{ Empirical formula} = N_2O \checkmark$ Molecular formula $M_r \text{ of gas} = 1.833 \times 24 = 44 \checkmark \text{ (calc } 43.992\text{)}$ With these two pieces of evidence, assume that molecular	[3]
(c)	formula = N_2O amount of NaOH in titration = 0.175 x 22.05/1000 or 3.86 x 10^{-3} \checkmark (calc: 3.85875 x 10^{-3}) amount of A in 25.0 cm ³ = 0.5 x mol NaOH or 1.93 x 10^{-3} \checkmark (calc: 1.929375 x 10^{-3}) amount of A in 250 cm ³ = 10 x 1.93 x 10^{-3} or 1.93 x 10^{-2} \checkmark 1.93 x 10^{-2} mol A has a mass of 2.82 g molar mass of A = 2.82/1.93 x 10^{-2} = 146 g mol ⁻¹ \checkmark (or M_r of A is 146) Therefore A is adipic acid / HOOC(CH ₂) ₄ COOH \checkmark	[5]
		Total: 15

Mark Scheme 2816/03 June 2006

2816/3 Mark Scheme June 2006

A2 Practical 2816/03

PLAN Skill P 16 marks (out of 19 available)

<u>P</u>	8 marks for Preparation for the Titration	
P1	Add <u>sulphuric</u> acid to a <u>known/weighed mass</u> of [cast] iron Use of HCl forfeits mark P1 only	[1]
P2	Use excess acid to ensure all of the iron reacts/dissolves	[1]
P3	Conditions desirable for the reaction – any two points from the seven listed below	W
	 iron should be powdered/filed/ground down [if possible!] heat the mixture stir the mixture reason for the above: to increase rate of reaction or reference to low reactivit wait until reaction/fizzing stops before proceeding or wait until iron has dissol reaction with acid should be done in the absence of air/oxygen iron(II) ions could be oxidised [by oxygen] to iron(III) or use a Bunsen valve [to ensure an atmosphere of hydrogen] 	•
P4	Equation for reaction: Fe + H₂SO₄ → FeSO₄ + H₂ Correct ionic equation is acceptable. Ignore attempt at state symbols	[1]
P5	Calculation of minimum volume or concentration of acid needed to react with iron	ո[1]
P6	Cast iron contains about 5% of carbon as the main impurity. <i>Or</i> three correct impurities named from carbon, silicon, sulphur and phosphorus	[1]
P7	Impurities do not react/dissolve in acid and filter to remove impurities	[1]
P8	Make [filtrate] up to (e.g.) 250 cm ³ with distilled water, using a volumetric flask	[1]
I	The titration	
T1	Use KMnO ₄ of known/specified concentration in the burette Concentration of KMnO ₄ used must be between 0.01 and 0.2 mol dm ⁻³	[1]
T2	Pipette a known volume of iron(II) sulphate solution into a [conical] flask and acidify with [plenty of dilute] sulphuric acid.	[1]
Т3	No indicator required (implied) and statement of end point colour	[1]
T4	Titrate until two consistent/concordant/equal accurate titres are obtained Accept 'titres within 0.1 cm ³ ' (unit needed).	[1]
T5	Equation for redox reaction involved $MnO_4^{-} + 8H^{+} + 5Fe^{2+} \rightarrow Mn^{2+} + 5Fe^{3+} + 4H_2O$	[1]

[1]

Calculates concentration of solution of iron(II) sulphate from specimen titration data.

or calculates no of moles of iron(II) ions in pipetted volume

Mark T6 is **not** available if 25.0 cm³ chosen as specimen titre

T6

2816/3	Mark Scheme	June 2006
T7	Calculation to show how % purity is iron is determined from conc ⁿ of Fe ²⁺ salt Calculations must be clearly explained, intelligible and accurate	[1]
<u>s</u>	4 marks for safety, sources and qwc	
S1	One significant hazard and safety measure stated for sulphuric acid The safety measure must the linked to the hazard of the acid Note $-H_2SO_4$ is irritant > 0.5 M and corrosive > 1.5 M Accept 'standard' safety measures such as safety specs., gloves or lab coal	[1] at
S2	Two sources quoted in the text or at end of plan. Book references must have chapter or page numbers Internet reference must go beyond the first slash of web address The same book or internet reference cannot be quoted twice. Accept one specific reference to 'Hazcards', by name or number Accept one specific reference to past papers (of any board)	[1]
S3	QWC: text is legible and spelling, punctuation and grammar are accurate Award S3 if there are fewer than six errors in legibility, spelling, punctuation or gra Treat each type of ICT mistake in the Plan (e.g. 'cm3') as one error. A repeated error (e.g. no capitals at start of sentences) is penalised once of	
S4	 QWC: information is organised clearly and coherently Is a word count given and within the limits 450–850 words? Photocopied/downloaded material counts within the total Is scientific language used correctly? (One error is allowed without per Is there a serious terminology error – e.g. 'strong' for 'concentrated Is there an incorrect chemical formula in the text? Are units used correctly in text and specimen calculations? Is the description in a reasonably logical order? 	

2816/3 Mark Scheme June 2006

Practical Test (B): Mark Scheme

Page 3 [12 marks]

Mass readings [1]

- Both weighings must be listed
- All masses should be recorded consistently to two (or three) decimal places
- Units, g, must be shown (somewhere)
- Subtraction to give mass of F must be correct.
- Labelling of masses must have minimum of the words 'bottle'/'container' (aw)

Presentation of titration data

[2]

All bullet points below correct = 2 marks.

Three bullets correct = 1 mark.

Two bullets correct = 0 marks

A table giving **only** the volume differences loses **both** marks.

- Correctly drawn and labelled table (initial, final and difference) used to record data
- All 'accurate' burette data (including 0.00) are quoted to 0.05 cm³
- The trial titre is shown and clearly labelled
- All subtractions are correct

Self-consistency of titres

[1]

- Both of the candidate's accurate titres should agree within 0.10 cm³.
- Units, cm³ or ml, must given at least once in or alongside the table is sufficient.

Mean titre correctly calculated

[1]

- The mean should normally be calculated using the two [closest] accurate titres.
- The mean must be quoted to 2 d.p (but **not** to 3 d.p.).
- Unit must be shown (but absence of cm³ not penalised twice on page 3)

Accuracy and Safety - 6 + 1 marks are available

The conversion chart below is used to award the mark out of 6 for accuracy.

T (Candidate's adjusted titre) = candidate's mean titre x supervisor's mass/candidate's mass

<i>T</i> is within 1.20 cm ³ of mean supervisor's value	[1 mark]
<i>T</i> is within 0.90 cm ³ of mean supervisor's value	[2]
<i>T</i> is within 0.70 cm ³ of mean supervisor's value	[3]
<i>T</i> is within 0.50 cm ³ of mean supervisor's value	[4]
<i>T</i> is within 0.30 cm ³ of mean supervisor's value	[5]
<i>T</i> is within 0.20 cm ³ of mean supervisor's value	[6 marks]

Safety

Requires reference to hazard (corrosive/causes burns) and wash with plenty of water [1]

2816/	3 Mark Scheme	June 2006
Page	4 [5 marks]	
(a)	$M_{\rm r}$ of $K_2Cr_2O_7 = 294$ or 294.2	[1]
	$[K_2Cr_2O_7] = {}^5/_{294} = 0.0170 \text{ mol dm}^{-3}$	[1]
(b)	$n(K_2Cr_2O_7) = \frac{\text{titre } \times 0.0170}{1000} / \frac{1}{1000}$	[1]
(c)	$Cr_2O_7^{2-} + 14H^+ + 6e^- \rightarrow 2Cr^{3+} + 7H_2O$	[1]
(d)	$Fe^{2+} - e^{-} \rightarrow Fe^{3+} \ or \ Fe^{2+} \rightarrow Fe^{3+} + e^{-}$	[1]
Page	5 [4 marks]	
(e)	Award mark for the full ionic equation (if completely correct) Cr ₂ O ₇ ²⁻ + 14H ⁺ + 6Fe ²⁺ → 6Fe ³⁺ + 2Cr ³⁺ + 7 H ₂ O or a clear explanation of the mole ratio using the numbers of moles of electrons	[1]
(f)	$n(Fe^{2+}) = 6 \times "b"$	[1]
(g)	This method mark is for realising the need to scale up from 25 cm ³ to 250 cm ³ and for dividing mass of F used by number of moles of Fe ²⁺	[1]
	$M_{\rm r} = {{\rm mass~of~F~used} \over {\rm Mark~is~for~a~correct~calculation~from~candidate's~mass~and~mean~titre}}$	[1]
Page	6 [2 marks]	
(h)	$M_{\rm r}$ of "anhydrous" FeSO ₄ .(NH ₄) ₂ SO ₄ = 284 and subtract this from 'hydrated' $M_{\rm r}$	[1]
	x = 6 (or correctly calculated answer from candidate's data)	[1]
Page	7 [7 marks]	
(a)	3 marks	
	Green, blue or turquoise [solution formed]	[1]
	R is an aldehyde	[1]
	[Only] aldehydes can be oxidised [by dichromate(VI) ions] or aldehydes can behave as reducing agents or ketones cannot be oxidised	[1]
(b)	4 marks	
	S gives no colour change/ stays orange/ has no reaction / no observation	[1]
	S is a tertiary alcohol	[1]
	Tertiary alcohols cannot be oxidised or primary and secondary types can	[1]
	S could be $(C_2H_5)_2C(OH)CH_3$ or formula of any tertiary alcohol with 6 carbons Any unambiguous representation of the formula (structural or displayed) All H atoms must be shown in the formula	[1]

Mark Scheme 2816/3 June 2006 Pages 9 + 10 [14 marks] (a) 3 marks Volume of ammonia = $0.0060 \times 24000 \text{ cm}^3$ or $0.0060 \times 24 \text{ dm}^3$ [1] Award this mark for 0.0040 x 24000 or 0.0080 x 24000 Volume = 144 cm^3 [1] Mark 96 cm³ or 192 cm³ correct, by ecf No. of moles of $NH_4^+ = 0.0080$ so amount of NaOH (0.0060 mol) is limiting [1] (b) 6 marks maximum Insufficient NaOH was used/ more NaOH should be used [1] NaOH should be in excess to ensure that all NH₄⁺ ions react [1] [Minimum of] 0.0080 moles of NaOH must be used [to react with all NH₄⁺] [1] Iron(II) hydroxide is [the green precipitate] produced [1] NaOH reacts with iron(II) ions [as well as with ammonium ions] [1] At least 0.016 mol of NaOH should be used [to ensure complete reaction] or 0.0080 mol NaOH extra is needed to react with iron(II) ions [1] Ammonia is soluble in water or dissolves in [the water present in] aq NaOH [1] Water evaporates/steam produced while heating the mixture [1] Use a solid alkali **or** use a more concentrated solution of alkali [1] Use an ignition tube containing one of the reagents [inside the boiling tube] or some other specified method of keeping reagents apart at the start [1] This error is small because reaction won't start if cold/reaction requires heating [1] 2 marks (c) In the titration, the titres were consistent/within 0.1 cm³ [1] Student's results, spread by 7cm³, were not consistent and therefore not reliable [1] (d) 3 marks Volumetric flask: $^{100 \times 0.3}/_{250} = 0.12\%$ [1] Pipette: $^{100 \times 0.06}/_{25} = 0.24\%$ [1] Volumetric flask has lower % error/ is more accurate [1]

Advanced GCE Chemistry 3882/7882 June 2006 Assessment Series

Unit Threshold Marks

Unit		Maximum Mark	а	b	С	d	е	u
2811	Raw	60	46	40	34	28	22	0
	UMS	90	72	63	54	45	36	0
2812	Raw	60	48	42	36	30	24	0
	UMS	90	72	63	54	45	36	0
2813A	Raw	120	93	83	73	64	55	0
	UMS	120	96	84	72	60	48	0
2813B	Raw	120	93	83	73	64	55	0
	UMS	120	96	84	72	60	48	0
2813C	Raw	120	86	76	66	56	47	0
	UMS	120	96	84	72	60	48	0
2814	Raw	90	68	59	50	41	33	0
	UMS	90	72	63	54	45	36	0
2815A	Raw	90	67	59	51	44	37	0
	UMS	90	72	63	54	45	36	0
2815B	Raw	90	66	59	52	45	38	0
	UMS	90	72	63	54	45	36	0
2815C	Raw	90	70	63	56	49	43	0
	UMS	90	72	63	54	45	36	0
2815D	Raw	90	68	61	54	47	40	0
	UMS	90	72	63	54	45	36	0
2815E	Raw	90	67	59	51	44	37	0
	UMS	90	72	63	54	45	36	0
2816A	Raw	120	94	84	74	65	56	0
	UMS	120	96	84	72	60	48	0
2816B	Raw	120	94	84	74	65	56	0
	UMS	120	96	84	72	60	48	0
2816C	Raw	120	88	77	67	57	47	0
	UMS	120	96	84	72	60	48	0

Specification Aggregation Results

Overall threshold marks in UMS (i.e. after conversion of raw marks to uniform marks)

	Maximum Mark	Α	В	С	D	E	U
3882	300	240	210	180	150	120	0
7882	600	480	420	360	300	240	0

The cumulative percentage of candidates awarded each grade was as follows:

	Α	В	С	D	E	U	Total Number of Candidates
3882	20.3	40.1	58.1	73.9	86.4	100.0	14192
7882	28.6	54.3	73.6	87.3	96.2	100.0	10291

For a description of how UMS marks are calculated see: www.ocr.org.uk/OCR/WebSite/docroot/understand/ums.jsp

Statistics are correct at the time of publication.

OCR (Oxford Cambridge and RSA Examinations) 1 Hills Road Cambridge CB1 2EU

OCR Information Bureau

(General Qualifications)

Telephone: 01223 553998 Facsimile: 01223 552627 Email: helpdesk@ocr.org.uk

www.ocr.org.uk

For staff training purposes and as part of our quality assurance programme your call may be recorded or monitored

Oxford Cambridge and RSA Examinations is a Company Limited by Guarantee Registered in England Registered Office; 1 Hills Road, Cambridge, CB1 2EU Registered Company Number: 3484466 OCR is an exempt Charity

OCR (Oxford Cambridge and RSA Examinations) Head office Telephone: 01223 552552

Facsimile: 01223 552553

