Centre No.				Pape	er Refer	ence			Surname	Initial(s)
Candidate No.		6	2	4	4	/	0	1	Signature	

6244/01

Edexcel GCE

Chemistry

Advanced

Unit Test 4

Thursday 23 June 2005 – Afternoon

Time: 1 hour 30 minutes

Materials required for examination	Items included with question paper
Nil	Nil

Instructions to Candidates

In the boxes above, write your centre number, candidate number, your surname, initial(s) and

Answer ALL the questions in the spaces provided in this question paper.

You may use a calculator. Show all the steps in any calculations and state the units.

Information for Candidates

The total mark for this paper is 75. The marks for individual questions and parts of questions are shown in round brackets: e.g. (2). There are 16 pages in this question paper. All blank pages are indicated.

A Periodic Table is printed on the back cover of this booklet.

Advice to Candidates

You are reminded of the importance of clear English and careful presentation in your answers.

is publication may be reproduced only in accordance with

W850/R6244/57570 7/7/4/13,900

Question Number	Leave Blank
1	
2	
3	
4	
5	

Turn over

Total

Leave blank

			Answer ALL questions in the spaces provided.
1.	(a)	(i)	State the type of bonding in:
			magnesium oxide, MgO
			sulphur dioxide, SO ₂
			(2)
		(ii)	When water is added to magnesium oxide, a solution of pH 11 is formed. When sulphur dioxide is bubbled into water a solution of pH 2 is formed.
			Write the equation for each reaction and explain why each solution is not neutral.
			Magnesium oxide + water
			Sulphur dioxide + water
			(4)
		(iii)	Explain why silicon dioxide does not react with water.
			(3)

	Write an ionic equation for the reaction of hydrated aluminium ions with water
	(1
(ii)) Write an equation for the reaction of silicon tetrachloride with water.
	(1
c) (i)	Tin(IV) chloride is stable to heat, but lead(IV) chloride decomposes at roor temperature to lead(II) chloride and chlorine.
	What trend in Group 4 does this illustrate?
	was a second in the second in
(ii)	(1
(ii)	
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with solution containing Fe ³⁺ ions.
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with solution containing Fe ³⁺ ions. Tin(II) chloride
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with solution containing Fe ³⁺ ions.
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with solution containing Fe ³⁺ ions. Tin(II) chloride
(ii)	(1) Suggest how, if at all, tin(II) chloride and lead(II) chloride would react with solution containing Fe ³⁺ ions. Tin(II) chloride

Leave	
hlank	

2. (a) Electron affinities of an element, such as iodine, can be calculated using a Born-Haber cycle.

	Value/kJ mol ⁻¹
Enthalpy of atomisation of calcium, ΔH_a (calcium)	+193
1st ionisation energy of calcium, IE_1	+590
2nd ionisation energy of calcium, IE_2	+1150
Enthalpy of atomisation of iodine, ΔH_a (iodine)	+107
Lattice energy of calcium iodide, ΔH_{latt}	-2074
Enthalpy of formation of calcium iodide, $\Delta H_{\rm f}$	-534

(i)	Define the term first electron affinity , EA_1 .
	(2)

Leave blank

(ii) Write suitable symbols or values in the boxes to label the Born-Haber cycle below.

(iii) Use the data to calculate the first electron affinity of iodine, EA_1 .

(2)

L	eave
h	lank

(b)	The	values	of	the	lattice	energies	of	potassium	iodide	and	calcium	iodide
	expe	rimental	lly d	eterr	nined fr	om Born-l	Hab	er cycles and	d theore	tically	calculate	ed from
	an io	nic mod	lel a	re sh	own be	low.						

	Experimental lattice energy / kJ mol ⁻¹	Theoretical lattice energy / kJ mol ⁻¹
Potassium iodide, KI(s)	-651	-636
Calcium iodide, CaI ₂ (s)	-2074	-1905

(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium
(ii)	Explain why the experimental and theoretical values of the lattice energy are almost the same for potassium iodide, but are significantly different for calcium

3.	(a)	Propanoic acid, CH ₃ CH ₂ COOH, can be prepared from carbon dioxide and an organic reagent.
		Name this organic reagent and state the conditions for the preparation.
		Reagent
		Conditions
		(3)
	(b)	Describe what you would see and write the equations for the reactions of propanoic acid with:
		(i) a solution of sodium carbonate
		Observation
		Equation
		(2)
		(ii) solid phosphorus pentachloride.
		Observation
		Equation
		(2)
	(c)	Propanoic acid can also be prepared from propanal, CH ₃ CH ₂ CHO. State the reagents for this conversion.
		Reagents
		(2)

(d) 1-aminobutan-2-ol, CH ₃ CH ₂ CH(OH)CH ₂ NH ₂ , is an active ingredient in some deodorant sprays.
It can be prepared from propanal by the following two-step process.
$CH_3CH_2CHO \xrightarrow{\text{Step 1}} CH_3CH_2CH(OH)CN \xrightarrow{\text{Step 2}} CH_3CH_2CH(OH)CH_2NH_2$
(i) For Step 1
State the reagents and conditions.
Name the type of reaction.
(3)
(ii) For Step 2
State the reagents and conditions.
Name the type of reaction.
(3)

(e)	Write the structural formula of the organic product formed when 1-aminobutan-2	2-ol
	reacts with:	
	(i) ethanoyl chloride, CH ₃ COCl	
		(2)
	(ii) hydrochloric acid.	
		(1)
f)	1-aminobutan-2-ol exists as two isomers with the same structural formula.	
	Identify the type of isomerism and draw the TWO isomers, showing clearly	the
	difference between them.	tiic
	Type of isomerism	
		(3)

4. (a) When silver carbonate is heated, it decomposes into silver oxide and carbon dioxide.

$$Ag_2CO_3(s) \rightleftharpoons Ag_2O(s) + CO_2(g)$$

At 227 °C, the value of the equilibrium constant, K_p , is 1.48 atm.

(i) Write the expression for the equilibrium constant, K_p .

(1)

(ii) What is the pressure of carbon dioxide gas when silver carbonate is heated to a temperature of 227 °C in a closed vessel?

(1)

(b) When nitrosyl chloride, NOCl, is heated, it dissociates reversibly into nitric oxide, NO, and chlorine, Cl₂, according to the equation

$$2NOCl(g) \rightleftharpoons 2NO(g) + Cl_2(g)$$
 $\Delta H = +75.6 \text{ kJ mol}^{-1}$

(i) Write the expression for the equilibrium constant, K_p , for this reaction.

(1)

	Le bla
(ii) 1.00 mol of nitrosyl chloride was placed in a sealed container and heated to 500 °C. Equilibrium was reached when 22.0% of the nitrosyl chloride had dissociated. The pressure in the vessel was 5.00 atm.	
Calculate the value of K_p at this temperature, stating its units.	
(5)	
(iii) State the effect of an increase in temperature on the value of the equilibrium constant, $K_{\rm p}$. Justify your answer.	
(iii) State the effect of an increase in temperature on the value of the equilibrium	
(iii) State the effect of an increase in temperature on the value of the equilibrium	
(iii) State the effect of an increase in temperature on the value of the equilibrium	
(iii) State the effect of an increase in temperature on the value of the equilibrium	
(iii) State the effect of an increase in temperature on the value of the equilibrium constant, K_p . Justify your answer.	
 (iii) State the effect of an increase in temperature on the value of the equilibrium constant, K_p. Justify your answer. (2) (iv) Hence suggest in which direction the position of equilibrium moves when the 	
 (iii) State the effect of an increase in temperature on the value of the equilibrium constant, K_p. Justify your answer. (2) (iv) Hence suggest in which direction the position of equilibrium moves when the 	
 (iii) State the effect of an increase in temperature on the value of the equilibrium constant, K_p. Justify your answer. (2) (iv) Hence suggest in which direction the position of equilibrium moves when the 	
 (iii) State the effect of an increase in temperature on the value of the equilibrium constant, K_p. Justify your answer. (2) (iv) Hence suggest in which direction the position of equilibrium moves when the 	

L	eave
hl	ank

5.	(a)	The first step in the esterification of ethanoic acid, CH ₃ COOH, by ethanol in the
		presence of a small quantity of concentrated sulphuric acid, is the reaction

$$CH_3COOH + H_2SO_4 \rightarrow CH_3COOH_2^+ + HSO_4^-$$

In the space below the equation, identify the two acid base conjugate pairs.

(2)

(b) Ethanoic acid, CH₃COOH, is a weak acid and dissociates in water according to the equation

$$CH_3COOH(aq) + H_2O(1) \rightleftharpoons H_3O^+(aq) + CH_3COO^-(aq)$$

Its acid dissociation constant, K_a , is

$$K_{\rm a} = \frac{[{\rm H_3O^+}][{\rm CH_3COO^-}]}{[{\rm CH_3COOH}]} = 1.74 \times 10^{-5} \text{ mol dm}^{-3} \text{ (at 25 °C)}$$

(i) The concentration of a solution of ethanoic acid can be determined by titrating a 25.0 cm³ sample in a conical flask against a standard solution of sodium hydroxide.

State whether the pH at the end point is less than 7, 7, or more than 7, and hence name a suitable indicator for this titration.

(ii) Ethanoic acid is only about 1% ionised in dilute solutions. Its enthalpy of neutralisation is -55 kJ mol⁻¹, whereas the enthalpy of neutralisation of a strong acid, such as hydrochloric acid, is -57 kJ mol⁻¹.

Explain why there is so little difference between these two values.

 	•••••	••••••	

(3)

(3)
(iv) To 50.0 cm ³ of the solution in (iii), an equal volume of a 0.200 mol dm ⁻³ solution of potassium ethanoate was added. Calculate the pH of the buffer solution obtained.
(4)
Assumptions
Calculation

5 6 7 0	${\rm He}^4$	14 16 19	7 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	As Se Arsenic Selenium 33 34	122 128 127	209 210 Bi PO Bismuth Polonium 83 84		$ \begin{array}{c cccc} 167 & 169 & 173 & 175 \\ \hline Er & Tm & Yb & Lu \\ Erbium & Thulium & Ytterbium & Luterium \\ 68 & 69 & 70 & 71 \\ \hline \end{array} $	(253) (256) (254) (257) Fm Md No Lr Fermium Mendelevium Nobelium Lawrencium 100 101 103
ю 4			+	G_{allium}^{20}	Cd In Sn Cadmium Indium Tin Tin Sn	204 TI Thallium		163 165 16 Dy Ho Eth Dysprosium Holmium Eth 66 67 6	(254) ES steinium
ABLE				Nickel Copper 28 29	106 108 Pd Ag n Palladium Silver 46 47	197 Au Gold		152 157 159	(243) (247) (245) (Ample Cm Bk (Ample Curium Brekeium Calium Berkeium Calium Ca
THE PERIODIC TABLE Group	Key Molar mass g mol ⁻¹ Symbol	Name Atomic number		55 56 Mn Fe Manganese Iron 25 26	99 101 Tc Ru Technetium Ruthenium 43 44	Re Os Rhenium Osmium 75 76		(147) 150 Pm Sm Sm Sm Sm Sm Sm Sm	(237) (242) Np Pu Neptunium 93 94 94
H				51 V Vanadium Ch	- E	178 181 184 Hf Ta W Hafnium Tantalum Tungsten 72 73 74		140	Th Pa U Uranium 90 91
1 2	I Hydrogen 1	E	2 4 24 24 Na Magnesium Magnesium 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Calcium Sc			Ra Radium		

