MARK SCHEME for the October/November 2008 question paper

9701 CHEMISTRY

9701/04

Paper 4 (Theory 2), maximum raw mark 100

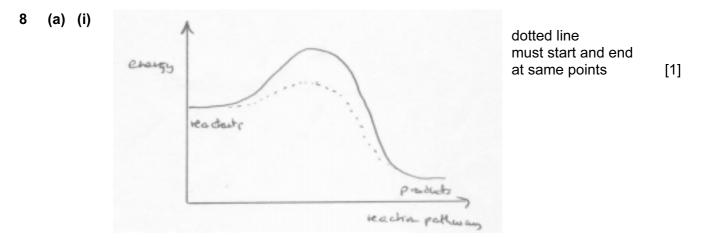
This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began.

All Examiners are instructed that alternative correct answers and unexpected approaches in candidates' scripts must be given marks that fairly reflect the relevant knowledge and skills demonstrated.

Mark schemes must be read in conjunction with the question papers and the report on the examination.

• CIE will not enter into discussions or correspondence in connection with these mark schemes.

CIE is publishing the mark schemes for the October/November 2008 question papers for most IGCSE, GCE Advanced Level and Advanced Subsidiary Level syllabuses and some Ordinary Level syllabuses.


UNIVERSITY of CAMBRIDGE International Examinations

	Page 2						k Sche				Sylla		Paper	
			GCE A/AS LEVEL – October/November 2008		97	01	04							
1	(a)	(i)	162 160 158 81 79	(⁸¹ E (⁷⁹ E (⁸¹ E	Br ^{- 81} Br ⁺) Br ^{- 79} Br ⁺) Br ^{- 79} Br ⁺) Br ⁺) Br ⁺)		e missir	ng charge	es			for atom	ar species ic species 5 masses	[1] [1] [1]
		(ii)		160:162 1 =1:1	2 =1:2:1									[1] [1]
	(b)	(i)	eithe	er BrCH	₂ CHBr-C	HO or (CH ₂ =CI	H-CH₂OF	l (dou	ble bon	d needed)		[1]
		(ii)		tion I: tion II:	- •	-	-	, -	-		e <i>nt not ne</i> I-CH₂OH			[1]
			(rea	ctions c		LiA <i>t</i> H₄ c		•						[1]
	(c)	(i)	C ₃ H ₆	₆ OBr ₂ =	216, 218	3 and 22	20					(any one)	[1]
		(ii)	31 106 108 185 187 189	is is is is is	$\begin{array}{c} {\sf CH}_2{\sf OH}\\ {\sf C}_2{\sf H}_3{}^{79}{\sf E}\\ {\sf C}_2{\sf H}_3{}^{81}{\sf E}\\ {\sf C}_2{\sf H}_3{}^{79}{\sf E}\\ {\sf C}_2{\sf H}_3{}^{79}{\sf E}\\ {\sf C}_2{\sf H}_3{}^{81}{\sf E}\end{array}$	8r ⁺ 8r ⁺ 8r ₂ ⁺ 8r ⁸¹ Br ⁺ 8r ₂ ⁺	ignoi	re missing 6 corr 5 corr	ect [4	-j				[4]
		IT N	o mas	ss numa	oers give	n — [1] c	oniy					[Tet	alı 12 may	[4]
												liot	al: 13 max	12]
2	(a)	sol	ution	will turn	ı brown/p	urple								[1]
	(b)	tab		cas 1 2 3		a 1 1 1	b 1 1 2	c 0 1 2						
					row scor ed, a cor		tical ro	w can sc	ore [1]			[3 n	nax]
	(c)			5–7.5 × mol dn										[1] [1]
	(d)				ed and qu half-lives			-94 s						[1] [1]

Page 3				Scheme	Syllabus	Paper
		GCE A/AS L	EVEL – O	ctober/November 2008	9701	04
so c line	order v s 1 an	w.r.t. [H ₂ O ₂] = 1	l rate (1.8)	by $0.07/0.05 = 1.4$, so does r is also the increase in [H ₂ O ₂ ero order)		[1] [1]
		tion can be acce ders are correct		rking/explanation given sco	re [1]	
(f) the	first s	tep/or the releva	int equatio	n		[1]
						[Total: 11]
3 (a) (i)	catio	n/M ²⁺ radius/size	e increase	e down the Group/higher de s down the group/M ²⁺ charg ers less polarisation/distortic	e density decrea	nperature [1] Ises [1] [1]
(ii)	ionic	radii quoted:	Ca ²⁺ : 0.09 Zn ²⁺ : 0.07 Pb ²⁺ : 0.12	74 nm		[1]
	if can		DCO ₃ is mo	ss stable, but PbCO $_3$ to be r pre stable than ZnCO $_3$ (or co		[1] reference
(b) (i)	O = 3 C = 5	57.7/63.5 36.2/16 5.4/12	= = =	0.91 ratios correct scores 2.26 0.45		[1]
	H = 0		=	0.90 hence $Cu_2O_5CH_2$		[1]
(ii)	Cu ²⁺ (aq) <i>or</i> [Cu(H ₂ O)	₆] ²⁺ NOT [Cu(H ₂ O) ₄] ²⁺		[1]
(iii)	D is (CuO / copper(II)	oxide			[1]
	Cu₂O 221	$0_5 CH_2 \longrightarrow $		$CO_2 + H_2O$		[1] (M _r s) [1]
	∴ 10	\longrightarrow	10 × 159/	/221 = 7.2 g (7.19)		
	if can	ididate thinks or	ly CO ₂ is I	ost, answer will be 8.0g		[1]
(iv)		copper; F is Fe Cu ²⁺ ——→ Fe				[1] [1]
(v)	redox	k/displacement				[1]
(vi)	(disso blue	ppt./solid formed olves to give) da ppt. is Cu(OH) ₂ (blue is [Cu(NH ₃	ırk blue/pu s)	rple colour / [Cu(NH ₃) ₄ (H ₂ O) ₂] ²⁺ NOT [C	$u(NH_3)_6]^{2+}$	[1] [1] [1] [1]
						[Total: 19]

	Page 4		Mark Scheme GCE A/AS LEVEL – October/November 2008	Syllabus 9701	Paper 04
4	(a) ((i) CH	$_{2}$ =CH–CH ₂ CH ₂ CH ₃ accept C ₃ H ₇ on RHS		[1]
	(i	ii) 8			[1]
	(b) ((i) e.g.	$C_{40}H_{82} \longrightarrow C_{16}H_{34} + 2 C_{12}H_{24} \text{ OR } C_{24}H_{48}$		[1]
	(1		t + catalysts/SiO ₂ /A <i>l</i> ₂ O ₃ /Pt/ceramic/pumice/zeolite etc mp given >500 °C		[1]
	(i		ds broken: 4(C–C) = 4 × 350 = 1400 kJ n d formed: 2 (C=C) = 2 × 610 = 1220 kJ n ∴∆H = +180 kJ n eqn in (i) : +90 kJ mol ⁻¹ for each C=C formed (could k	J mol ^{−1}	[1]
	(i [,]	v) end	othermic reactions $\Delta H > 0$. ,	[1]
					[Total: 6]
5			itromethylbenzene itrophenylethanoic acid		[1] [1]
	(b) s	step II:	Cl_2 + light <i>or</i> heat (T~100 °C) (A <i>l</i> C l_3 or aq. ne	egates)	[1]
	ę	step III:	KCN (in ethanol) + heat (T~75°C) (HCN negates))	[1]
	\$	step V:	Sn or Fe + HC <i>l</i> (+ heat)		[1]
					[Total: 5]
6	• •		aqueous iodine (NaOH/I₂) (allow NaOI) yellow ppt; K gives no reaction		[1] [1]
			s bromine / Cu ²⁺ aq / diazotisation with phenol		[1]
	۱	with Cu	no change; M decolourises/gives white ppt. ²⁺ L goes blue, M goes green zotisation L gives no reaction, M a coloured compound		[1]
					[.]
	(or add A N g or add N N g or add a	water zzes/gives off steamy fumes; P has no reaction AgNO ₃ (aq) ives rapid ppt.; P gives ppt. very slowly NH ₃ /RNH ₂ ives off fumes; P has no reaction alcohol/phenol roduces sweet-smelling liquid, P gives no reaction		[1] [1] [1] [1] [1] [1] [1] [1]
	• •		al Indicator solution/litmus s no change; R will turn solution blue (alkaline)		[1] [1] [Total: 8]

	Page 5			Mark Scheme	Syllabus	Paper
				GCE A/AS LEVEL – October/November 2008	9701	04
7	(a)	prote	ein:	polymer of amino acids / amino acids are monomers.		[1]
	(b)	at lea	ast	of at least two amino acids joining by the loss of water one peptide bond drawn out in full formula of the tripeptide		[1] [1] [1]
	(c)			HC <i>l</i> etc. <i>or</i> alkali/OH⁻/NaOH_NOT conc H₂SO₄ or any I/reflux if temp given >90 °C	HNO ₃	[1] [1]
	(d)	(i) :	six			[1]
				= $3 \times 75 + 2 \times 89 + 2 \times 165 - 6 \times 18$ = 625 ww [1] for M_r = 733) o ecf from (i)		[1] [1]
						[Total: 9]

(ii)	protein/polypeptide NOT polymer/polyamide	[1]
(iii)	they are denatured/lose their 2°/3° structure/or H-bonds/vdW	[1]

(b) (i) competitive inhibitor resembles the substrate OR competes for the active site of the enzyme [1]

non-competitive inhibitor can bind to a different site on the enzyme OR forms a covalent bond/bonds permanently with the enzyme [1]

Page 6	Mark Scheme GCE A/AS LEVEL – October/November 2008	Syllabus 9701	Paper 04
	GCE A/AS LEVEL - October/November 2006	9701	04
(ii)			
	1		
	reachine V max		
	I		
	I		
	subshelr >		
	cacecheron		
	mark for each line NB lines must cross to score mark for II		[2 ×
(c) (i)	-S-H groups (allow sulphide/S/cysteine residue)		
(ii)	this inhibits/reduces/decreases the enzyme activity/stops n		
	the bonding disrupts the 3-dimensional structure of the enz	zyme	
			[Total:
(a) (i)	cut DNA into sections / fragments / minisatellites		
(ii)	these undergo electrophoresis OR are placed on agarose	gel	
(iii)	radioactive phosphorus / ³² P OR darkens photographic film	ı	
(b) (i)	NMR can be done in solution / in vivo / shows labile proton	s / shows positions	of proto
	and/or carbon atoms X-ray crystallography shows the positions of most atoms in	structure / allows	
	measurement of bond length		
(ii)	different types of tissue have protons in different chemical	environments / tum	our and
	healthy tissue absorb differently / allow at different frequen		
(c) (i)	M : M+1 = 48 : 1.7		
	$x = \frac{100 \times 1.7}{1.1 \times 48}$ = 3.2 hence there are 3 carbon atoms in the NB if calculation shown 1.1 divisor MUST		
	since the compound has an m/e of 73 and contains 3 carbonary 1 oxygen atom, $y = 73-(36 + 14 + 16) = 7$	on atoms, 1 nitroge	n atom a
(ii)	the NMR spectrum shows a quartet, triplet pattern character the other broad peak must be due to N–H protons	eristic of an ethyl gr	oup
	thus the structure of the compound is likely to be		
	CH ₃ CH ₂ CONH ₂		

[Total: 11 max 10]

	Page 7		Mark Scheme	Syllabus	Paper	
			GCE A/AS LEVEL – October/November 2008	9701	04	
10	(a) (i)		vorm – hydrogen bonds er – van der Waals' OR hydrogen bonds			[1] [1]
	(ii)	•	er silk is more elastic/flexible/less rigid than silkworm s vorm silk absorbs water more easily	ilk/has a lower c		[1] [1]
	(iii)	this i	increases the elasticity/hydrophobic nature of the silk		[[1]
	(b) (i)	a po	lymer formed with the elimination/formation of a small	molecule		
		(or e	example)		[[1]
	(ii)	any	addition polymer e.g. poly(ethene), PVC, etc.		[[1]
	(iii)	3 fro	m			
	()		tion polymers have a limited range of bonds/monomers	S	[[1]
			tion polymers are non-polar/have fewer/no H-bonds		-	[1]
			densation polymers/proteins have a range of combinati	ons of amino ac	•	
			vide range of properties densation polymers/proteins have more functional grou	ps/sidechains		[1] [1]
			rent sequences of amino acids result in different 2°/3°			[1]
					_	-

[Total: 12 max 10]