School:

Student Bounty Com

DULWICH COLLEGE

UPPER SCHOOL CHEMISTRY ENTRANCE TEST

2009 - 2010

75 minutes

Instructions

- Answer all the questions in the spaces provided. Remember to put your name and school at the top of this page.
- Use black ink (but pencil for any graphs). A calculator may be required.
- A Periodic Table (containing all the required relative atomic masses etc.) is provided at the back of this test. You may detach it if you wish.
- Show <u>all</u> of your working in any calculations.
- The number of marks for each question is indicated at the end of that question.

FOR MARKER'S USE ONLY

Comments:	Mark / 75

2, 8, 2

3iv	e the electronic configuration of a calcium atom. alcium metal is heated strongly in a stream of nitrogen gas, the compound calcium nitride is
	alcium metal is heated strongly in a stream of nitrogen gas, the compound calcium nitride is ned.
i)	Draw a dot-and-cross diagram to show the bonding in calcium nitride. Only the outer shell electrons need to be shown.
	[4]
ii)	Give a fully balanced symbol equation to represent this reaction.
	[2]
iii)	Molten calcium nitride conducts electricity. However, solid calcium nitride does not. Explain this observation.
	[3]
	cium metal reacts readily with cold water. However, magnesium metal (also in Group 2) only ets with water in the form of steam.
	comparing their electronic structures, explain why magnesium is less reactive than calcium.
••••	

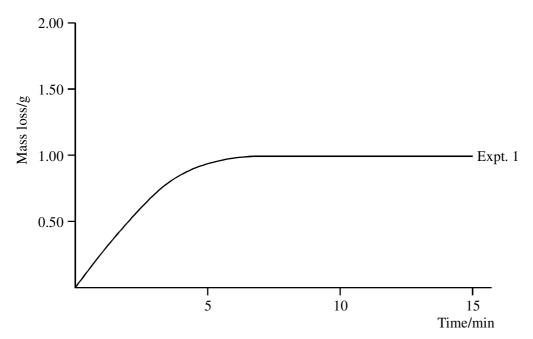
13 marks

Student Bounts, com aqueous nydrocnioric acid was added to calcium carbonate in a conical flask placed on balance. The following reaction took place:

$$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

The loss in mass of the flask and its contents was recorded for 15 minutes.

Four experiments were carried out:

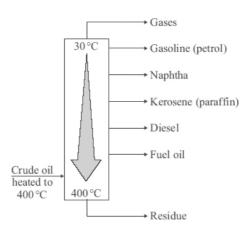

Experiments 1, 3 and 4 were carried out at room temperature (20 °C).

The same mass of calcium carbonate (a large excess) was used in each experiment.

The pieces of calcium carbonate were the same size in experiments 1, 2 and 4.

Experiment	Calcium carbonate	Hydrochloric acid
1	Small pieces	50.0 cm ³ of 1.00 mol dm ⁻³
2	Small pieces	50.0 cm ³ of 1.00 mol dm ⁻³ heated to 80°C
3	One large piece	50.0 cm ³ of 1.00 mol dm ⁻³
4	Small pieces	50.0 cm ³ of 2.00 mol dm ⁻³

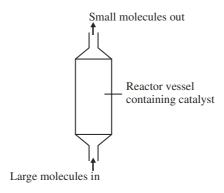
The results of experiment 1 give the curve shown on the graph below. (a)


(i) Explain why there is a loss in mass as the reaction proceeds.

[2]

(ii) Explain the shape of the curve drawn for experiment 1.

	ei the curves 2, 3 and 4.
i)	calculate the mass of calcium carbonate which exactly reacts with 50.0 to 1.00 mol dm ⁻³ aqueous hydrochloric acid. $M_{\rm r}({\rm CaCO_3})=100$.
	[3]
i)	Based on your answer to (c)(i) suggest a suitable mass of calcium carbonate to use in the experiments. Explain your answer.
	Suggested mass:
	Explanation:
	[2]
yd	a different experiment, the same mass of calcium carbonate, and the same volume of rochloric acid are mixed. However, the acid is twice as concentrated. Explain what happens to reaction rate.
••••	
	[3]
••••	[2]
	ne temperature of the acid is increased, the rate of reaction increases. Use collision theory to lain why this happens.


18 marks

Student Bounty.com

(a)	Describe how the naphtha fraction separates from the other fractions.
	[2]

(b) The naphtha fraction is often used to make other useful materials. This involves the **cracking** of hydrocarbons in the naphtha fraction.

(i) Cracking involves a thermal decomposition reaction.

Define the term **thermal decomposition**.

.....[2]

(ii) Suggest why air must be excluded from the reactor vessel.

(iii) In the reactor vessel, a nonane (C_9H_{20}) molecule is split into two smaller molecules. Complete the equation for this reaction by adding the missing formula.

$$C_9H_{20} \longrightarrow \dots C_2H_4$$
 [1]

	ponding in etnene.
v)	Bromine water can be used to distinguish between the two products from the cracking reaction in (c) (i) above.
	Describe what you would see when each molecule is shaken (separately) with bromine water.
	[3]
\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	mall molecules such as ethene can be joined together to make long-chained polymers. Modern window frames are often made from uPVC plastic which contains the <i>polymer</i> called poly(chloroethene).
i)	State why plastic window frames need no painting or maintenance.
	[1]
ii)	Name the monomer that is used to make poly(chloroethene). [1]
iii)	Draw a line diagram to show the repeating unit in poly(chloroethene).
	[1]
	1-3

are two possible bromides that can form – depending on the proportions of phosphorus a the reacting mixture.

Student Bounty.com If excess bromine is used, the molecule formed contains 7.19% phosphorus and 92.81% bromine mass).

(i) What is the empirical formula of this compound? (a)

		[4]
	(ii)	Write a balanced symbol equation for this reaction.
		[2]
(b)	Und	er different conditions, phosphorus tribromide (PBr ₃) can be produced.
	(i)	Draw a dot-and-cross diagram to show the bonding in a molecule of phosphorus tribromide. Only the outer shell electrons need to be shown.
		[2]
	(ii)	Phosphorus tribromide has melting point of -41.5 °C. By describing its structure and bonding, explain why its melting point is relatively low.

	where it replaces an OH group with a promine atom to produce an alkyl pre- compounds are very useful for synthesising other organic molecules.) PBr ₃ + 3C ₂ H ₅ OH \longrightarrow 3C ₂ H ₅ Br + H ₃ PO ₃ What mass of phosphorus tribromide is needed to make 90 tonnes of bromoethane (C ₂ H ₅ Br). Give your answer (in tonnes) to 3 significant figures. [1 tonne = 1000 kg]
	$PBr_3 + 3C_2H_5OH \longrightarrow 3C_2H_5Br + H_3PO_3$
	What mass of phosphorus tribromide is needed to make 90 tonnes of bromoethane (C_2H_5Br). Give your answer (in tonnes) to 3 significant figures. [1 tonne = 1000 kg]
(iv	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of
(iv	
(iv	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this?
(iv	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of
miniı	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this?
miniı	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite
miniu	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used.
miniu	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode.
miniu ectro (i)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? [1] 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode. Anode: [1]
miniu ectro (i)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? [1] 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode. Anode: [1] Cathode: [1]
miniu ectro (i)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode. Anode: [1] Cathode: [1] State which of these reactions is an oxidation process.
miniu ectro (i)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? [1] 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode. Anode: [1] Cathode: [1] State which of these reactions is an oxidation process.
iniu (i)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this? 15 marks m metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite lysed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used. Give the ionic equations for the reactions taking place at each electrode. Anode: [1] Cathode: [1] State which of these reactions is an oxidation process. [1]

5.

	Stille
(i)	Explain why, despite this high cost, aluminium is manufactured in large quantities
(ii)	Give two reasons why it is worthwhile to recycle aluminium.
	minium is relatively high in the reactivity series and yet it tends to react much more slow expected. Why is this?
	10 mai
	TOTAL: 75 MAR

THIS IS THE END OF THE QUESTIONS

NOW GO BACK AND CHECK YOUR ANSWERS

	3 4 5 6 7 0	Hellium Hellium 4	5 6 7 8 9 10 B C N O F Ne Boron Carbon Nitrogen Oxygen Fluorine Neon 11 12 14 16 19 20 13 14 16 19 20	Silicon Phosphous Subhur Chlorine 28 31 32 35.5	Genanium Arsenic Selenium Bromine 73 75 79 80	Sn Sb Te 52 53 53 54 55 55 55 55 55 55 55 55 55 55 55 55	82 83 84 85 Pb Bi Po At Lead Bismuth Potonium Astatine 207 209 (210) (210)		68 69 70 Friedram Thallum Thal	Md Nobelium Nobelium (256) (254)	QUINTY.C
THE PERIODIC TABLE	Group	Atomic Number Symbol Name Molar mass in	g mol		26 27 28 29 30 Fe Co Ni Cu Zn Iron Cobalt Nickel Copper Znc 56 59 63.5 65.4	44 45 46 47 48 Ru Rh Pd Ag Cd Ruthenium Rhodium Palkedium Silver Cadmium 101 103 106 112	76 77 78 79 80 Os Ir Pt Au Hg 0smlum Infidum Platinum Gold Mercury 190 192 195 201		62 63 64 65 66 Smar/um Europium Gadolnium Terbium Terbium Dysocium 150 155 159 163	Pu Am Cm Bk Cf (242) Calfornium (242) (243) (247) (245) (251)	
	2 2		Be Beryllum 9 9 9	Mg Magnesum 24	20 Calcium 40	38 39 40 41 42 Sr Y Zr Nb Molydeanum Strontium Yrrium Zirconium Nklobium Molydeanum 88 91 93 96	56 57 72 73 74 Ba La Hf Ta W Baruum Lanthaum Harinum Tungsten Tungsten 137 139 178 181 184	Ra Ac Unq Unp Unp Hadium Actinium Unnitruadium U	59 60 Pr Praseodymum Neodimum 141 1	Actinide elements 90 91 92 PA 92 Userium Protectitium 232 (231) 92 Userium 238	
	Period L	Hydrogen	2 Ei	Sodium Sodium Sodium Sadium	19 A Fortassium 39	37 S Rb Rubidium 85	6 Cs Caestium 133	7 Fr Francium (223)	A	*	