Name:	
School:	

DULWICH COLLEGE

UPPER SCHOOL CHEMISTRY ENTRANCE TEST

2009 - 2010

75 minutes

Instructions

- Answer all the questions in the spaces provided. Remember to put your name and school at the top of this page.
- Use black ink (but pencil for any graphs). A calculator may be required.
- A Periodic Table (containing all the required relative atomic masses etc.) is provided at the back of this test. You may detach it if you wish.
- Show <u>all</u> of your working in any calculations.
- The number of marks for each question is indicated at the end of that question.

FOR MARKER'S USE ONLY

Comments:	Mark / 75

	The electronic configuration of a magnesium atom can be represented as: 2, 8, 2				
C	Give the electronic configuration of a calcium atom.				
•	[1]				
	calcium metal is heated strongly in a stream of nitrogen gas, the compound calcium nitride is bringed.				
(i	Draw a dot-and-cross diagram to show the bonding in calcium nitride. Only the outer shell electrons need to be shown.				
	[4]				
(i	i) Give a fully balanced symbol equation to represent this reaction.				
	[2]				
(i	ii) Molten calcium nitride conducts electricity. However, solid calcium nitride does not. Explain this observation.				
	[3]				
	Calcium metal reacts readily with cold water. However, magnesium metal (also in Group 2) only eacts with water in the form of steam.				
Е	by comparing their electronic structures, explain why magnesium is less reactive than calcium.				
•					
	[3]				

1.

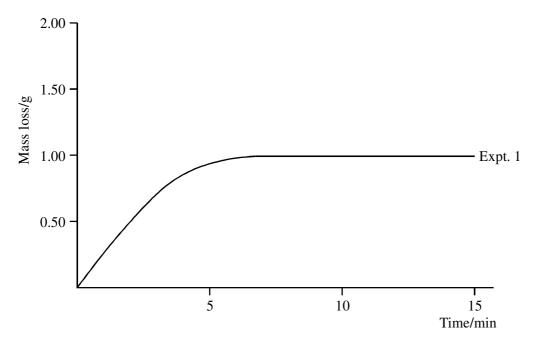
13 marks

2. In a series of experiments to investigate the factors which control the rate of a chemical reaction, aqueous hydrochloric acid was added to calcium carbonate in a conical flask placed on an electronic balance. The following reaction took place:

$$CaCO_3(s) + 2HCl(aq) \longrightarrow CaCl_2(aq) + H_2O(l) + CO_2(g)$$

The loss in mass of the flask and its contents was recorded for 15 minutes.

Four experiments were carried out:


Experiments 1, 3 and 4 were carried out at room temperature (20 °C).

The same mass of calcium carbonate (a large excess) was used in each experiment.

The pieces of calcium carbonate were the same size in experiments 1, 2 and 4.

Experiment	Calcium carbonate	Hydrochloric acid
1	Small pieces	50.0 cm ³ of 1.00 mol dm ⁻³
2	Small pieces	50.0 cm ³ of 1.00 mol dm ⁻³ heated to 80°C
3	One large piece	50.0 cm ³ of 1.00 mol dm ⁻³
4	Small pieces	50.0 cm ³ of 2.00 mol dm ⁻³

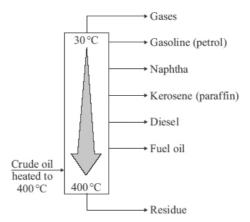
(a) The results of experiment 1 give the curve shown on the graph below.

(i) Explain why there is a loss in mass as the reaction proceeds.

•••••	• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

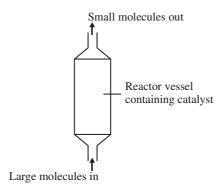
.....[2]

(ii) Explain the shape of the curve drawn for experiment ${\bf 1}.$


[2]

- 2 - LVAR 2009

(b)		we curves on the graph to represent the results you would expect for experiments 2, 3 and 4. [3]
(c)	(i)	Calculate the mass of calcium carbonate which exactly reacts with 50.0 cm ³ of 1.00 mol dm ⁻³ aqueous hydrochloric acid. $M_{\Gamma}(\text{CaCO}_3) = 100$.
		[3]
	(ii)	Based on your answer to $(c)(i)$ suggest a suitable mass of calcium carbonate to use in the experiments. Explain your answer.
		Suggested mass:
		Explanation:
		[2]
(d)	hyd	a different experiment, the same mass of calcium carbonate, and the same volume of lrochloric acid are mixed. However, the acid is twice as concentrated. Explain what happens to reaction rate.
		[3]
(e)		he temperature of the acid is increased, the rate of reaction increases. Use collision theory to lain why this happens.
	••••	
		[3]


18 marks

3. Crude oil is the source of many useful materials. Crude oil is separated into fractions by fractional distillation.

/ \	D '1 1	.1 1.1	c	, c	41 41	c
(a)	Describe how	the naphtha	traction se	eparates fron	1 the other	tractions

(b) The naphtha fraction is often used to make other useful materials. This involves the **cracking** of hydrocarbons in the naphtha fraction.

(i) Cracking involves a thermal decomposition reaction.

Define the term **thermal decomposition**.

[2]

(ii) Suggest why air must be excluded from the reactor vessel.

(iii) In the reactor vessel, a nonane (C_9H_{20}) molecule is split into two smaller molecules. Complete the equation for this reaction by adding the missing formula.

$$C_9H_{20} \longrightarrow \dots + C_2H_4$$
 [1]

(iv)	The product with the formula C_2H_4 is called ethene. Draw a line diagram to show the bonding in ethene.
(v)	[1] Bromine water can be used to distinguish between the two products from the cracking
	reaction in (c) (i) above. Describe what you would see when each molecule is shaken (separately) with broming water.
	[3]
	Modern window frames are often made from uPVC plastic which contains the polymer called poly(chloroethene).
(i)	State why plastic window frames need no painting or maintenance.
(ii)	Name the monomer that is used to make poly(chloroethene).
(iii)	Draw a line diagram to show the repeating unit in poly(chloroethene).
(iv)	Describe one environmental hazard with plastics such as poly(chloroethene).
	[2]

4.	When phosphorus is heated in bromine vapour, molecules of phosphorus bromide are produced. There are two possible bromides that can form – depending on the proportions of phosphorus and bromine in the reacting mixture.			
	If exemass		bromine is used, the molecule formed contains 7.19% phosphorus and 92.81% bromine (by	
	(a)	(i)	What is the empirical formula of this compound?	
			[4]	
		(ii)	Write a balanced symbol equation for this reaction. [2]	
	(b)	Unc	ler different conditions, phosphorus tribromide (PBr ₃) can be produced.	
		(i)	Draw a dot-and-cross diagram to show the bonding in a molecule of phosphorus tribromide. Only the outer shell electrons need to be shown.	
		<i>(</i> 11)	[2]	
		(ii)	Phosphorus tribromide has melting point of -41.5 °C. By describing its structure and bonding, explain why its melting point is relatively low.	
			[3]	

		(iii)	The most important reaction of phosphorus tribromide is with alcohols (such as ethanol) where it replaces an OH group with a bromine atom to produce an alkyl bromide. (These compounds are very useful for synthesising other organic molecules.)
			$PBr_3 + 3C_2H_5OH \longrightarrow 3C_2H_5Br + H_3PO_3$
			What mass of phosphorus tribromide is needed to make 90 tonnes of bromoethane (C_2H_5Br) ? Give your answer (in tonnes) to 3 significant figures. [1 tonne = 1000 kg]
			[3]
		(iv)	In practice, the mass of phosphorus tribromide calculated above only generates 67 tonnes of bromoethane. What percentage yield is this?
			[1]
			15 marks
5.			n metal is manufactured by a process in which purified bauxite, dissolved in molten cryolite, rsed at 800 °C. Graphite electrodes and a current of about 120 000 amperes are used.
	(a)	(i)	Give the ionic equations for the reactions taking place at each electrode.
			Anode :[1]
			Cathode :[1]
		(ii)	State which of these reactions is an oxidation process. [1]
		(iii)	Explain why the anodes need to be replaced frequently.
			[2]
			(continued)

- 7 -

LVAR 2009

(b)	The production of aluminium is expensive.					
	(i)	Explain why, despite this high cost, aluminium is manufactured in large quantities.				
		[2]				
	(ii)	Give two reasons why it is worthwhile to recycle aluminium.				
		ra				
		[2]				
(c)		minium is relatively high in the reactivity series and yet it tends to react much more slowly a expected. Why is this?				
	••••					
	••••					
		[1]				
		10 marks				

THIS IS THE END OF THE QUESTIONS

NOW GO BACK AND CHECK YOUR ANSWERS

- 8 -

TOTAL: 75 MARKS

	0	2 T ellum 4	Neon Neon 20 18 4 Argan	40 7 ₹ 36 84 m	31 31 86	30 adon (222)	
	_		9 T luorine 17 O Ohlorine				71 Luerium 175 103 Lewrencium (257)
	9		00xygen File 16				70 YW Luviverbium Luviverbium Luviverbium Luviverbium Luviverbium Luviverbium Luviverbium Lawiverbium Lawiverbium (254) (2554)
	5		Nitrogen 14 15 Phosphorus	-			69 Thailum Thailum 169 101 Md Mendelevium (256)
	4		6 Carbon 24 12 12	32 Germaniun 73	S 28 119 28	Pb Lead 207	68 Erbium 167 100 Fm Femium (253)
	က		5 Boron 11 13 A Aluminium	31 Gallium 70	115 12 18	Thallium 204	67 Hohnium 165 99 Einsteinium (254)
				30 Zno Zno 65.4	Cadmium 112	Hg Mercury 201	66 Dysprosium 163 98 Californium (251)
THE PERIODIC TABLE	40			29 Copper 63.5	Ag Silver 108 79	Au Gold 197	65 Terbium 159 97 BK Barkelium (245)
IC T			(3)	28 Nickel 59	Palladium 106 78	Pt Platinum 195	G4 Gadolinum 157 96 Cm Contum (247)
RIOD				27 Cobatt 59	Rhodium 103	Iridium 192	63 Europium 152 95 Am Americium (243)
E PE	<u>a</u>	ss in		26 Iron 56	Ruthenium 101	Osmium 190	Sm Samarium 150 94 Put Putonium (242)
王	Group	Atomic Number Symbol Name Molar mass in	- 0 0 0	Mn Manganese 55	Technetium (99)	Rhenium 186	61 Promethium (147) 93 Neptunium (237)
				24 Chromium 52	Molybdenum 96	Tungsten 184 106 Unnilhexium (263)	Medimium 144 92 Uranium 238
				23 V Vanadium 51	Niobium 93	Tantalum 181 105 Unp Unnipentium (262)	59 Praseodymium 141 91 Pa Protactinium (231)
						Hafnium 178 104 Unniquadium (261)	Certum F 140 90 90 Thorium 232
						Lanthanum 139 89 Actinium	
	8		Be Beryllum 9 12 Mg Magnesium	20 Calcium 40	Strontium 888	Ba Barium 137 88 Radium (226)	Lanthanide elements Actinide elements
	-	Hydrogen	Lithium 7 11 11 Sodium Sodium				
	Period		0 6	4	ro	9 2	I

- 9 - LVAR 2009